Nosil P, Crespi BJ, Sandoval CP. Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature. 2002;417:440–3.
Article
CAS
PubMed
Google Scholar
Gloss AD, Abbot P, Whiteman NK. How interactions with plant chemicals shape insect genomes. Curr Opin Insect Sci. 2019;36:149–56.
Article
PubMed
PubMed Central
Google Scholar
Simon J-C, d’Alençon E, Guy E, Jacquin-Joly E, Jaquiéry J, Nouhaud P, et al. Genomics of adaptation to host-plants in herbivorous insects. Brief Funct Genomics. 2015;14:413–23.
Article
CAS
PubMed
Google Scholar
Fischer HM, Wheat CW, Heckel DG, Vogel H. Evolutionary origins of a novel host plant detoxification gene in butterflies. Mol Biol Evol. 2008;25:809–20.
Article
CAS
PubMed
Google Scholar
Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the Pea Aphid, Acyrthosiphon pisum. Mol Biol Evol. 2009;26:2073–86.
Article
CAS
PubMed
Google Scholar
Kulmuni J, Wurm Y, Pamilo P. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity. 2013;110:538–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng T, Wu J, Wu Y, Chilukuri RV, Huang L, Yamamoto K, et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat Ecol Evol. 2017;1:1747–56.
Article
PubMed
Google Scholar
Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury J-M, Duvic B, et al. Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Sci Rep. 2017;7:11816.
Article
PubMed
PubMed Central
Google Scholar
Robertson HM, Baits RL, Walden KKO, Wada-Katsumata A, Schal C. Enormous expansion of the chemosensory gene repertoire in the omnivorous German cockroach Blattella germanica. J Exp Zoolog B Mol Dev Evol. 2018;330:265–78.
Article
CAS
Google Scholar
Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, et al. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae. G3 Genes Genomes Genet. 2022;12:jkac131.
Google Scholar
Cates RG. Feeding patterns of monophagous, oligophagous, and polyphagous insect herbivores: the effect of resource abundance and plant chemistry. Oecologia. 1980;46:22–31.
Article
PubMed
Google Scholar
Gavrilets S. Models of speciation: where are we now? J Hered. 2014;105:743–55.
Article
PubMed
Google Scholar
Felsenstein J. Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution. 1981;35:124–38.
Article
PubMed
Google Scholar
Feder JL, Opp SB, Wlazlo B, Reynolds K, Go W, Spisak S. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. Proc Natl Acad Sci U S A. 1994;91:7990–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linn CE, Dambroski HR, Feder JL, Berlocher SH, Nojima S, Roelofs WL. Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors. Proc Natl Acad Sci U S A. 2004;101:17753–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavrilets S. Fitness landscapes and the origin of species (MPB-41). Princeton: Princeton University Press; 2004.
Book
Google Scholar
Servedio MR, Doorn GSV, Kopp M, Frame AM, Nosil P. Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol. 2011;26:389–97.
Article
PubMed
Google Scholar
Goergen G, Kumar PL, Sankung SB, Togola A, Tamò M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE. 2016;11: e0165632.
Article
PubMed
PubMed Central
Google Scholar
Diagne C, Turbelin AJ, Moodley D, Novoa A, Leroy B, Angulo E, et al. The economic costs of biological invasions in Africa: a growing but neglected threat? NeoBiota. 2021;67:11–51.
Article
Google Scholar
Pashley DP. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex? Ann Entomol Soc Am. 1986;79:898–904.
Article
Google Scholar
Pashley DP, Martin JA. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am. 1987;80:731–3.
Article
Google Scholar
Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, de Paula-Moraes SV, et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol. 2018;26:286–300.
Article
Google Scholar
Prowell DP, McMichael M, Silvain J-F. Multilocus genetic analysis of host use, introgression, and speciation in host strains of fall armyworm (Lepidoptera: Noctuidae). Ann Entomol Soc Am. 2004;97:1034–44.
Article
CAS
Google Scholar
Orsucci M, Moné Y, Audiot P, Gimenez S, Nhim S, Naït-Saïdi R, et al. Transcriptional differences between the two host strains of Spodoptera frugiperda (Lepidoptera: Noctuidae). Peer Community J. 2022;2.
Hänniger S, Dumas P, Schöfl G, Gebauer-Jung S, Vogel H, Unbehend M, et al. Genetic basis of allochronic differentiation in the fall armyworm. BMC Evol Biol. 2017;17:68.
Article
PubMed
PubMed Central
Google Scholar
Schöfl G, Heckel DG, Groot AT. Time-shifted reproductive behaviours among fall armyworm (Noctuidae: Spodoptera frugiperda) host strains: evidence for differing modes of inheritance. J Evol Biol. 2009;22:1447–59.
Article
PubMed
Google Scholar
Unbehend M, Hänniger S, Meagher RL, Heckel DG, Groot AT. Pheromonal divergence between two strains of Spodoptera frugiperda. J Chem Ecol. 2013;39:364–76.
Article
CAS
PubMed
Google Scholar
Unbehend M, Hänniger S, Vásquez GM, Juárez ML, Reisig D, McNeil JN, et al. Geographic variation in sexual attraction of Spodoptera frugiperda corn- and rice-strain males to pheromone lures. PLoS ONE. 2014;9: e89255.
Article
PubMed
PubMed Central
Google Scholar
Dumas P, Legeai F, Lemaitre C, Scaon E, Orsucci M, Labadie K, et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: two host strains or two distinct species? Genetica. 2015;143:305–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juárez ML, Schöfl G, Vera MT, Vilardi JC, Murúa MG, Willink E, et al. Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains? Entomol Exp Appl. 2014;152:182–99.
Article
Google Scholar
Kergoat GJ, Prowell DP, Le Ru BP, Mitchell A, Dumas P, Clamens A-L, et al. Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol Phylogenet Evol. 2012;65:855–70.
Article
PubMed
Google Scholar
Groot AT, Marr M, Heckel DG, Schöfl G. The roles and interactions of reproductive isolation mechanisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Ecol Entomol. 2010;35:105–18.
Article
Google Scholar
Pashley DP. Host-associated differentiation in armyworms (Lepidoptera: Noctuidae): an allozymic and mtDNA perspective. In: Loxdale HD, Hollander JD, editors. Electrophoretic studies on agricultural pests. Oxford: Clarendon Press; 1989. p. 103–14.
Google Scholar
Dumas P, Barbut J, Ru BL, Silvain J-F, Clamens A-L, d’Alençon E, et al. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae). PLoS ONE. 2015;10: e0122407.
Article
PubMed
PubMed Central
Google Scholar
Nagoshi RN. The fall armyworm Triosephosphate Isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann Entomol Soc Am. 2010;103:283–92.
Article
CAS
Google Scholar
Tessnow AE, Raszick TJ, Porter P, Sword GA. Patterns of genomic and allochronic strain divergence in the fall armyworm, Spodoptera frugiperda (JE Smith). Ecol Evol. 2022;12: e8706.
Article
PubMed
PubMed Central
Google Scholar
Durand K, Yainna S, Nam K. Incipient speciation between host-plant strains in the fall armyworm. BMC Ecol Evol. 2022;22:52.
Article
PubMed
PubMed Central
Google Scholar
Schlum KA, Lamour K, de Bortoli CP, Banerjee R, Meagher R, Pereira E, et al. Whole genome comparisons reveal panmixia among fall armyworm (Spodoptera frugiperda) from diverse locations. BMC Genomics. 2021;22:179.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feder JL, Gejji R, Yeaman S, Nosil P. Establishment of new mutations under divergence and genome hitchhiking. Philos Trans R Soc B Biol Sci. 2012;367:461–74.
Article
Google Scholar
Nam K, Nhim S, Robin S, Bretaudeau A, Nègre N, d’Alençon E. Positive selection alone is sufficient for whole genome differentiation at the early stage of speciation process in the fall armyworm. BMC Evol Biol. 2020;20:152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
Google Scholar
Gimenez S, Abdelgaffar H, Goff GL, Hilliou F, Blanco CA, Hänniger S, et al. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun Biol. 2020;3:664.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlidis P, Živković D, Stamatakis A, Alachiotis N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol. 2013;30:2224–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephan W. Genetic hitchhiking versus background selection: the controversy and its implications. Philos Trans R Soc B Biol Sci. 2010;365:1245–53.
Article
Google Scholar
Charlesworth B. The effects of deleterious mutations on evolution at linked sites. Genetics. 2012;190:5–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57.
Article
PubMed
Google Scholar
Nagoshi RN, Fleischer S, Meagher RL, Hay-Roe M, Khan A, Murúa MG, et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE. 2017;12: e0171743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flaxman SM, Wacholder AC, Feder JL, Nosil P. Theoretical models of the influence of genomic architecture on the dynamics of speciation. Mol Ecol. 2014;23:4074–88.
Article
PubMed
Google Scholar
Barton NH. Gene flow past a cline. Heredity. 1979;43:333–9.
Article
Google Scholar
Barton NH. Multilocus clines. Evolution. 1983;37:454–71.
Article
CAS
PubMed
Google Scholar
Feder JL, Nosil P. The efficacy of divergence hitchhiking in generating genomic islands during ecological speciation. Evol Int J Org Evol. 2010;64:1729–47.
Article
Google Scholar
Nagoshi RN, Koffi D, Agboka K, Adjevi AKM, Meagher RL, Goergen G. The fall armyworm strain associated with most rice, millet, and pasture infestations in the Western Hemisphere is rare or absent in Ghana and Togo. PLoS ONE. 2021;16: e0253528.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagoshi RN, Goergen G, Plessis HD, van den Berg J, Meagher R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Rep. 2019;9:8311.
Article
PubMed
PubMed Central
Google Scholar
Nagoshi RN, Goergen G, Tounou KA, Agboka K, Koffi D, Meagher RL. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci Rep. 2018;8:3710.
Article
PubMed
PubMed Central
Google Scholar
Tessnow AE, Gilligan TM, Burkness E, Placidi De Bortoli C, Jurat-Fuentes JL, Porter P, et al. Novel real-time PCR based assays for differentiating fall armyworm strains using four single nucleotide polymorphisms. PeerJ. 2021;9:e12195.
Article
PubMed
PubMed Central
Google Scholar
Grossman SR, Andersen KG, Shlyakhter I, Tabrizi S, Winnicki S, Yen A, et al. Identifying recent adaptations in large-scale genomic data. Cell. 2013;152:703–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 2013;14:R47.
Article
PubMed
PubMed Central
Google Scholar
Ghurye J, Rhie A, Walenz BP, Schmitt A, Selvaraj S, Pop M, et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly. PLOS Comput Biol. 2019;15: e1007273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu G-C, Xu T-J, Zhu R, Zhang Y, Li S-Q, Wang H-W, et al. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly. GigaScience. 2018;8:giy157.
PubMed Central
Google Scholar
Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: rapid annotation transfer tool. Nucleic Acids Res. 2011;39: e57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:88.
Article
PubMed
PubMed Central
Google Scholar
Yainna S, Tay WT, Fiteni E, Legeai F, Clamens A-L, Gimenez S, et al. Genomic balancing selection is key to the invasive success of the fall armyworm. bioRxiv. 2020;2020.06.17.154880.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47:e63–e63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kergoat GJ, Goldstein PZ, Le Ru B, Meagher RL, Zilli A, Mitchell A, et al. A novel reference dated phylogeny for the genus Spodoptera Guenée (Lepidoptera: Noctuidae: Noctuinae): new insights into the evolution of a pest-rich genus. Mol Phylogenet Evol. 2021;161: 107161.
Article
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics. 2011;27:718–9.
Article
PubMed
PubMed Central
Google Scholar
Rentería ME, Cortes A, Medland SE. Using PLINK for genome-wide association studies (GWAS) and data analysis. In: Gondro C, van der Werf J, Hayes B, editors. Genome-Wide Association Studies and Genomic Prediction. Totowa: Humana Press; 2013. p. 193–213.
Chapter
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
CAS
PubMed
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dxy/Example at master · hugang123/Dxy. GitHub. https://github.com/hugang123/Dxy. Accessed 18 May 2022.
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O. Fast and efficient estimation of individual ancestry coefficients. Genetics. 2014;196:973–83.
Article
PubMed
PubMed Central
Google Scholar
Messer PW. SLiM: simulating evolution with selection and linkage. Genetics. 2013;194:1037–9.
Article
PubMed
PubMed Central
Google Scholar
Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, et al. A high-resolution recombination map of the human genome. Nat Genet. 2002;31:241–7.
Article
CAS
PubMed
Google Scholar
Campbell CD, Chong JX, Malig M, Ko A, Dumont BL, Han L, et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012;44:1277–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, et al. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 2007;17:520–6.
Article
CAS
PubMed
PubMed Central
Google Scholar