Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 2019;366(6471): eaax3100.
Article
PubMed
Google Scholar
Jaureguiberry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, et al. The direct drivers of global anthropogenic biodiversity loss. Sci Adv. 2022;8:1–12.
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science (New York, NY). 2014;344(6187):987–98.
Article
CAS
Google Scholar
WWF. Living Planet Report 2022—Building a nature- positive society. Gland, Switzerland: WWF; 2022.
Norris K. Biodiversity in the context of ecosystem services: the applied need for systems approaches. Philos Trans R Soc Lond B Biol Sci. 2012;367(1586):191–9.
Article
PubMed
PubMed Central
Google Scholar
Phillips HRPP, Cameron EK, Ferlian O, Türke M, Winter M, Eisenhauer N. Red list of a black box. Nat Ecol Evol. 2017;1(4):1. https://doi.org/10.1038/s41559-017-0103.
Article
Google Scholar
Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, Montanarella L, et al. Tracking, targeting, and conserving soil biodiversity: a monitoring and indicator system can inform policy. Science. 2021;371(6526):239–41.
Article
CAS
PubMed
Google Scholar
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515(7528):505–11.
Article
CAS
PubMed
Google Scholar
FAO, ITPS, GSBI, CBD, EC. State of knowledge of soil biodiversity—Status, challenges and potentialities, Report 2020. Rome: FAO; 2020. Available from: https://doi.org/10.4060/cb1928en.
Jónsson JOG, Davíðsdóttir B. Classification and valuation of soil ecosystem services. Agric Syst. 2016;6(145):24–38.
Article
Google Scholar
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci. 2018;115(25):6506–11. https://doi.org/10.1073/pnas.1711842115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wall DH, Bardgett RD, Kelly E. Biodiversity in the dark. Nat Geosci. 2010;3(5):297–8. https://doi.org/10.1038/ngeo860.
Article
CAS
Google Scholar
Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst. 2015;46(1):523–49.
Article
Google Scholar
Bardgett RD. Causes and consequences of biological diversity in soil. Zoology (Jena). 2002;105(4):367–74.
Article
Google Scholar
Decaëns T. Macroecological patterns in soil communities. Glob Ecol Biogeogr. 2010;19(3):287–302.
Article
Google Scholar
Wardle DA, Bonner KI, Barker GM. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol. 2002;16(5):585–95.
Article
Google Scholar
Cameron EK, Martins IS, Lavelle P, Mathieu J, Tedersoo L, Bahram M, et al. Global mismatches in aboveground and belowground biodiversity. Conserv Biol. 2019;0(0):1–6.
Google Scholar
Le Provost G, Thiele J, Westphal C, Penone C, Allan E, Neyret M, et al. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nat Commun. 2021;12(1):1–3.
Article
Google Scholar
Hulshof CM, Spasojevic MJ. The edaphic control of plant diversity. Glob Ecol Biogeogr. 2020;29(10):1634–50.
Article
Google Scholar
Sylvain ZA, Wall DH. Linking soil biodiversity and vegetation: implications for a changing planet. Am J Bot. 2011;98(3):517–27.
Article
PubMed
Google Scholar
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol Lett. 2009;12(11):1238–49.
Article
PubMed
Google Scholar
Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, De Palma A, et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol Evol. 2014;4(24):4701–35.
Article
PubMed
PubMed Central
Google Scholar
Hudson LN, Newbold T, Contu S, Hill SLLL, Lysenko I, De Palma A, et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol Evol. 2016;7(1):145–88.
Article
PubMed
PubMed Central
Google Scholar
Hengl T, Mendes DeJesus J, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotí A, et al. SoilGrids250m: global gridded soil information based on machine learning. PLOS One. 2017;12(2):1–40.
Article
Google Scholar
Hillebrand H, Blasius B, Borer ET, Chase JM, Downing JA, Eriksson BK, et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J Appl Ecol. 2018;55(1):169–84. https://doi.org/10.1111/1365-2664.12959.
Article
Google Scholar
Collison EJ, Riutta T, Slade EM. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions. Acta Oecologica. 2013;47:30–6.
Article
Google Scholar
Bengtsson J. Disturbance and resilience in soil animal communities. Eur J Soil Biol. 2002;38(2):119–25.
Article
Google Scholar
Adl SM, Coleman DC, Read F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agr Ecosyst Environ. 2006;114(2–4):323–34.
Article
Google Scholar
Chang L, Wang B, Liu X, Callaham MA, Ge F. Recovery of Collembola in Pinus tabulaeformis plantations. Pedosphere. 2017;27(1):129–37.
Article
CAS
Google Scholar
Tydecks L, Jeschke JM, Wolf M, Singer G, Tockner K. Spatial and topical imbalances in biodiversity research. PLoS ONE. 2018;13(7):1–15.
Article
Google Scholar
Tsiafouli MA, Thébault E, Sgardelis SP, de Ruiter PC, van der Putten WH, Birkhofer K, et al. Intensive agriculture reduces soil biodiversity across Europe. Glob Change Biol. 2015;21(2):973–85.
Article
Google Scholar
Postma-Blaauw M, Goede R, Bloem J, Faber JH, Brussard L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology. 2013;91(2):460–73.
Article
Google Scholar
Curry JP, Doherty P, Purvis G, Schmidt O. Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl Soil Ecol. 2008;39(1):58–64.
Article
Google Scholar
Li X, Liu T, Li H, Geisen S, Hu F, Liu M. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J Anim Ecol. 2022;91(9):1770–80.
Article
PubMed
Google Scholar
Paillet Y, Bergès L, HjÄltén J, Ódor P, Avon C, Bernhardt-Römermann M, et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv Biol. 2010;24(1):101–12.
Article
PubMed
Google Scholar
Augusto L, Bonnaud P, Ranger J. Impact of tree species on forest soil acidification. For Ecol Manage. 1998;105(1–3):67–78.
Article
Google Scholar
Bauer A, Black AL. Quantification of the effect of soil organic matter content on soil productivity. Soil Sci Soc Am J. 1994;58(1):185.
Article
Google Scholar
Coleman DC, Crossley DAJ, Hendrix PF. Fundamentals of Soil Ecology. 2nd ed. Elsevier Academic Press; 2001.
Google Scholar
Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Commun. 2019;10(1):1–10.
Article
CAS
Google Scholar
Heilmayr R, Echeverría C, Lambin EF. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat Sustain. 2020;3(9):701–9.
Article
Google Scholar
Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH. Ecological intensification: bridging the gap between science and practice. Trends Ecol Evol. 2019;34(2):154–66. https://doi.org/10.1016/j.tree.2018.11.002.
Article
PubMed
Google Scholar
van Capelle C, Schrader S, Brunotte J. Tillage-induced changes in the functional diversity of soil biota—a review with a focus on German data. Eur J Soil Biol. 2012;50:165–81. https://doi.org/10.1016/j.ejsobi.2012.02.005.
Article
Google Scholar
Sünnemann M, Auge H, Cesarz S, Guerrero-Ramírez NR, Ciobanu M, Eisenhauer N, et al. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci Rep. 2019;9(1):1–12.
Google Scholar
Ramirez KS, Döring M, Eisenhauer N, Gardi C, Ladau J, Leff JW, et al. Toward a global platform for linking soil biodiversity data. Front Ecol Evol. 2015;3(July):1–7.
Google Scholar
Orgiazzi A, Dunbar MB, Panagos P, de Groot GA, Lemanceau P. Soil biodiversity and DNA barcodes: opportunities and challenges. Soil Biol Biochem. 2015;80:244–50. https://doi.org/10.1016/j.soilbio.2014.10.014.
Article
CAS
Google Scholar
Potapov AM, Sun X, Briones MJI, Brown G, Cameron E, Cortet J, et al. Global monitoring of soil animal communities using a common methodology. Soil Organisms. 2022. https://doi.org/10.1101/2022.01.11.475793.
Article
Google Scholar
Chust G, Pretus JL, Ducrot D, Bedòs A, Deharveng L. Response of soil fauna to landscape heterogeneity: determining optimal scales for biodiversity modeling. Conserv Biol. 2003;17(6):1712–23.
Article
Google Scholar
Creamer RE, Barel JM, Bongiorno G, Zwetsloot M. The life of soils: integrating the who and how of multifunctionality. Soil Biol Biochem. 2022;166: 108561. https://doi.org/10.1016/j.soilbio.2022.108561.
Article
CAS
Google Scholar
IUCN. IUCN Red List 2017-2020 Report; 2020. Available from: https://nc.iucnredlist.org/redlist/resources/files/1630480997-IUCN_RED_LIST_QUADRENNIAL_REPORT_2017-2020.pdf.
McRae L, Deinet S, Freeman R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE. 2017;12(1):1–20.
Article
Google Scholar
ESRI. ArcGIS Release 10.3. Redlands, CA; 2014.
Zuur AF, Ieno EN, Walker N, Saveliev Aa, Smith GM. Mixed effects models and extension in ecology with R. Springer; 2009.
R Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2018. Available from: https://www.r-project.org.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
Article
Google Scholar
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4(2):133–42.
Article
Google Scholar