Escalona T, Weadick CJ, Antunes A. Adaptive patterns of mitogenome evolution are associated with the loss of shell scutes in turtles. Mol Biol Evol. 2017;34:2522–36. https://doi.org/10.1093/molbev/msx167.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu M, Zhang Z, Peng Z. The mitochondrial genome of the water spider Argyroneta aquatica (Araneae: Cybaeidae). Zool Scr. 2015;44:179–90. https://doi.org/10.1111/zsc.12090.
Article
Google Scholar
Masta SE, Longhorn SJ, Boore JL. Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Mol Phylogenet Evol. 2009;50:117–212.
Article
CAS
Google Scholar
Miya M, Kawaguchi A, Nishida M. Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol. 2001;18:1993–2009. https://doi.org/10.1093/oxfordjournals.molbev.a003741.
Article
CAS
PubMed
Google Scholar
Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218. https://doi.org/10.1146/annurev.genet.39.073003.112420.
Article
CAS
PubMed
Google Scholar
Pons J, Bover P, Bidegaray-Batista L, Arnedo MA. Arm-less mitochondrial tRNAs conserved for over 30 millions of years in spiders. BMC Genomics. 2019;20:665. https://doi.org/10.1186/s12864-019-6026-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schaack S, Ho EKH, Macrae F. Disentangling the intertwined roles of mutation, selection and drift in the mitochondrial genome. Philos Trans R Soc Lond B Biol Sci. 2020;375:20190173. https://doi.org/10.1098/rstb.2019.0173.
Article
CAS
PubMed
Google Scholar
Sun Y-B, Shen Y-Y, Irwin DM, Zhang Y-P. Evaluating the roles of energetic functional constraints on teleost mitochondrial-encoded protein evolution. Mol Biol Evol. 2010;28:39–44. https://doi.org/10.1093/molbev/msq256.
Article
CAS
PubMed
Google Scholar
Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–80. https://doi.org/10.1093/nar/27.8.1767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The origin and diversification of mitochondria. Curr Biol. 2017;27:R1177–92. https://doi.org/10.1016/j.cub.2017.09.015.
Article
CAS
PubMed
Google Scholar
World Spider Catalog, 2020. World Spider Catalog. Version 21.5. Natural History Museum Bern. http://wsc.nmbe.ch. Accessed October 26 2020. 10.24436/2.
Wheeler WC, Coddington JA, Crowley LM, Dimitrov D, Goloboff PA, Griswold CE, Hormiga G, Prendini L, Ramírez MJ, Sierwald P, et al. The spider tree of life: phylogeny of araneae based on target-gene analyses from an extensive taxon sampling. Cladistics. 2016;33:574–616. https://doi.org/10.1111/cla.12182.
Article
Google Scholar
Huang D, Hormiga G, Cai C, Su Y, Yin Z, Xia F, Giribet G. Origin of spiders and their spinning organs illuminated by mid-cretaceous amber fossils. Nat Ecol Evol. 2018;2:623–7. https://doi.org/10.1038/s41559-018-0475-9.
Article
PubMed
Google Scholar
Mammola S, Michalik P, Hebets EA, Isaia M. Record breaking achievements by spiders and the scientists who study them. PeerJ. 2017;5:e3972. https://doi.org/10.7717/peerj.3972.
Article
PubMed
PubMed Central
Google Scholar
Nyffeler M, Birkhofer K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci Nat. 2017;104:30. https://doi.org/10.1007/s00114-017-1440-1.
Article
CAS
Google Scholar
McQueen DJ, McLay CL. How does the intertidal spider Desis marina (Hector) remain under water for such a long time? N Z J Zool. 1983;10:383–91. https://doi.org/10.1080/03014223.1983.10423933.
Article
Google Scholar
McQueen DJ, Pannell LK, McLay CL. Respiration rates for the intertidal spider Desis marina (Hector). N Z J Zool. 1983;10:393–9. https://doi.org/10.1080/03014223.1983.10423934.
Article
Google Scholar
Vink CJ, McQuillan BN, Simpson AH, Correa-Garhwal SM. The marine spider, Desis marina (Araneae: Desidae): new observations and localities. Weta. 2017; 51: 71–79. https://weta.ento.org.nz/index.php/weta/article/view/73/67.
Baehr BC, Raven R, Harms D. “High tide or low tide”: Desis bobmarleyi sp. N., a new spider from coral reefs in australia’s sunshine state and its relative from sāmoa (Araneae, Desidae, Desis). Evol Syst. 2017;1:111–20. https://doi.org/10.3897/evolsyst.1.15735.
Article
Google Scholar
Correa-Garhwal SM, Clarke TH, Janssen M, Crevecoeur L, McQuillan BN, Simpson AH, Vink CJ, Hayashi CY. Spidroins and silk fibers of aquatic spiders. Sci Rep. 2019;9:13656. https://doi.org/10.1038/s41598-019-49587-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dhar D, Dey D, Basu S, Fortunato H. Understanding the adaptive evolution of mitochondrial genomes in intertidal chitons. bioRxiv. 2020. 2020.2003.2006.980664. https://www.biorxiv.org/content/biorxiv/early/2020/03/08/2020.03.06.980664.full.pdf.
Zhou T, Shen X, Irwin DM, Shen Y, Zhang Y. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds. Mitochondrion. 2014;18:70–5.
Article
CAS
Google Scholar
Zhang Z, Wang L. Chinese spiders illustrated. Chongqing: Chongqing University Press; 2017.
Google Scholar
Lin Y, Li S, Chen H. First report of the spider genus Desis (Araneae, Desidae) from China, with description of a new species. Zootaxa. 2020; 4755:5. https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4755.3.11.
Fernandez R, Kallal RJ, Dimitrov D, Ballesteros JA, Arnedo MA, Giribet G, Hormiga G. Phylogenomics, diversification dynamics, and comparative transcriptomics across the spider tree of life. Curr Biol. 2018;28(1489–1497):e1485. https://doi.org/10.1016/j.cub.2018.03.064.
Article
CAS
Google Scholar
Zhu H, Wang Z, Wang Z, Yu X. Complete mitochodrial genome of the crab spider Ebrechtella tricuspidata(Araneae: Thomisidae): A novel tRNA rearrangement and phylogenetic implications for Araneae. Genomics. 2019;111:1266–73.
Article
CAS
Google Scholar
Zhang Z, Xing Y, Cheng J, Pan D, Lv L, Cumberlidge N, Sun H. Phylogenetic implications of mitogenome rearrangements in East Asian potamiscine freshwater crabs (Brachyura: Potamidae). Mol Phylogenet Evol. 2020;143:106669. https://doi.org/10.1016/j.ympev.2019.106669.
Article
PubMed
Google Scholar
Filipovic I, Hereward JP, Rasic G, Devine GJ, Furlong MJ, Etebari K. The complete mitochondrial genome sequence of Oryctes rhinoceros (Coleoptera: Scarabaeidae) based on long-read nanopore sequencing. PeerJ. 2021;9:e10552.
Article
Google Scholar
Lamoral BH. On the ecology and habitat adaptations of two intertidal spiders, Desis formidabilis (OP Cambridge) and Amaurobioides africanus Hewitt, at “The island” (Kommetjie, Cape Peninsula), with notes on the occurrence of two other spiders. Ann Natal Museum. 1968;20:151–93.
Google Scholar
Moloney CL, Nicolson SW. Water relations and haemolymph composition of two intertidal spiders (Order Araneae). J Exp Mar Bio Ecol. 1984;83:275–84.
Article
CAS
Google Scholar
Flynn MR, Bush JWM. Underwater breathing: the mechanics of plastron respiration. J Fluid Mech. 2008; 608: 275–296. https://www.cambridge.org/core/article/underwater-breathing-the-mechanics-of-plastron-respiration/BD47A35039CD114DB2400448639E53AB.
Spagna JC, Crews SC, Gillespie RG. Patterns of habitat affinity and austral/holarctic parallelism in dictynoid spiders (Araneae:Entelegynae). Invert Syst. 2010;24:238–57. https://doi.org/10.1071/IS10001.
Article
Google Scholar
Crews SC, Garcia EL, Spagna JC, Van Dam MH, Esposito LA. The life aquatic with spiders (Araneae): repeated evolution of aquatic habitat association in Dictynidae and allied taxa. Zool J Linn Soc. 2019;189:862–920. https://doi.org/10.1093/zoolinnean/zlz139.
Article
Google Scholar
Shen Y-Y, Liang L, Zhu Z-H, Zhou W-P, Irwin DM, Zhang Y-P. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc Natl Acad Sci. 2010;107:8666–71.
Article
CAS
Google Scholar
Sun JT, Jin PY, Hoffmann AA, Duan XZ, Dai J, Hu G, Xue XF, Hong XY. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates. Insect Mol Biol. 2018;27(6):698–709. https://doi.org/10.1111/imb.12501.
Article
CAS
PubMed
Google Scholar
Chang H, Qiu Z, Yuan H, Wang X, Li X, Sun H, Guo X, Lu Y, Feng X, Majid M, et al. Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Mol Phylogenet Evol. 2020;145:106734. https://doi.org/10.1016/j.ympev.2020.106734.
Article
CAS
PubMed
Google Scholar
Kumar V, Tyagi K, Chakraborty R, Prasad P, Kundu S, Tyagi I, Chandra K. The complete mitochondrial genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis. Sci Rep. 2020;10:74. https://doi.org/10.1038/s41598-019-57065-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv Y, Li Y, Ruan Z, Bian C, You X, Yang J, Jiang W, Shi Q. The complete mitochondrial genome of Glyptothorax macromaculatus provides a well-resolved molecular phylogeny of the Chinese sisorid catfishes. Genes. 2018;9:282. https://doi.org/10.3390/genes9060282.
Article
CAS
PubMed Central
Google Scholar
Lv B, Wang J, Zhuo J, Yang H, Yang S, Wang Z, Song Q. Transcriptome sequencing reveals the effects of cadmium toxicity on the cold tolerance of the wolf spider Pirata subpiraticus. Chemosphere. 2020;254:126802. https://doi.org/10.1016/j.chemosphere.2020.126802.
Article
CAS
PubMed
Google Scholar
Fergusson IC. Natural History of the Spider Hypochilus Thorelli Marx (Hypochilidae). Psyche (Stuttg). 1972;79:039715. https://doi.org/10.1155/1972/39715.
Article
Google Scholar
Foelix R. Biology of spiders, 3rd ed.; Oxford University Press, New York, the United States of America, 2011. https://books.google.com.hk/books?id=eOUVDAAAQBAJ.
Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience. 2017. https://doi.org/10.1093/gigascience/gix120.
Article
PubMed
PubMed Central
Google Scholar
Meng G, Li Y, Yang C, Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019;47:e63–e63. https://doi.org/10.1093/nar/gkz173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.
Article
Google Scholar
Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM. Deducing the pattern of arthropod phytogeny from mitochondrial DNA rearrangements. Nature. 1995;376:163–5. https://doi.org/10.1038/376163a0.
Article
CAS
PubMed
Google Scholar
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41. https://doi.org/10.1093/nar/gkz268.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. Prottest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5. https://doi.org/10.1093/bioinformatics/btr088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42. https://doi.org/10.1093/sysbio/sys029.
Article
PubMed
PubMed Central
Google Scholar
Yang Z. Paml 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91. https://doi.org/10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Magalhaes ILF, Azevedo GHF, Michalik P, Ramírez MJ. The fossil record of spiders revisited: implications for calibrating trees and evidence for a major faunal turnover since the mesozoic. Biol Rev. 2020;95:184–217. https://doi.org/10.1111/brv.12559.
Article
Google Scholar
Fay JC, Wu C-I. Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genomics Hum Genet. 2003;4:213–35. https://doi.org/10.1146/annurev.genom.4.020303.162528.
Article
CAS
PubMed
Google Scholar
Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J. KaKs_calculator: calculating ka and ks through model selection and model averaging. Genomics Proteomics Bioinformatics. 2006. 4, 259–263. http://www.sciencedirect.com/science/article/pii/S1672022907600072.
Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4. https://doi.org/10.1093/molbev/msw054.
Article
CAS
PubMed
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52. https://doi.org/10.1093/oxfordjournals.molbev.a026334.
Article
CAS
Google Scholar