Cassis G, Schuh RT. Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annu Rev Entomol. 2012;57:377–404.
Article
CAS
PubMed
Google Scholar
Jung S, Lee S. Molecular phylogeny of the plant bugs (Heteroptera: Miridae) and the evolution of feeding habits. Cladistics. 2012;28:50–79.
Article
PubMed
Google Scholar
Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, et al. Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci. 2018;74:1286–96.
Article
CAS
PubMed
Google Scholar
Lu Y, Wu K, Jiang Y, Xia B, Li P, et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science. 2010;328:1151–4.
Article
CAS
PubMed
Google Scholar
Pan H, Lu Y, Wyckhuys KA. Early-season host switching in Adelphocoris spp. (Hemiptera: Miridae) of differing host breadth. PLoS ONE. 2013;8:e59000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Qiu F, Feng H, Li H, Yang Z, et al. Species composition and seasonal abundance of pestiferous plant bugs (Hemiptera: Miridae) on Bt cotton in China. Crop Prot. 2008;27:465–72.
Article
Google Scholar
Pan H, Liu B, Lu Y, Wyckhuys KA. Seasonal alterations in host range and fidelity in the polyphagous mirid bug, Apolygus lucorum (Heteroptera: Miridae). PLoS ONE. 2015;10:e0117153.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang Y, Zeng J, Xu J, Shi J. The trapping effects of different light sources on cotton mirids in the Yellow River Valley. Plant Prot. 2014;40:137–41.
Google Scholar
Fu X, Liu Y, Li C, Lu Y, Li Y, et al. Seasonal migration of Apolygus lucorum (Hemiptera: Miridae) over the Bohai Sea in northern China. J Econ Entomol. 2014;107:1399–410.
Article
PubMed
Google Scholar
Pan H, Xiu C, Lu Y. A combination of olfactory and visual cues enhance the behavioral responses of Apolygus lucorum. J Insect Behav. 2015;28:525–34.
Article
Google Scholar
Chen H, Mao H, Chu Y, Liu X, Zhang Q. The study of color traps for capturing cotton mirids. Chin J Appl Entomol. 2012;49:454–8.
Google Scholar
Wang L, Wang H, Liu X, Ren A, Wang Y. Attractive effect of the different color sticky traps on Apolygus lucorum in vineyard. J Fruit Sci. 2014;31:288–91.
Google Scholar
Briscoe AD, Chittka L. The evolution of color vision in insects. Annu Rev Entomol. 2001;46:471–510.
Article
CAS
PubMed
Google Scholar
Kim KN, Huang Q, Lei C. Advances in insect phototaxis and application to pest management: a review. Pest Manag Sci. 2019. https://doi.org/10.1002/ps.5536.
Article
PubMed
Google Scholar
Liu YJ, Yan S, Shen ZJ, Li Z, Zhang XF, Liu XM, et al. The expression of three opsin genes and phototactic behavior of Spodoptera exigua (Lepidoptera: Noctuidae): evidence for visual function of opsin in phototaxis. Insect Biochem Mol Biol. 2018;96:27–35.
Article
CAS
PubMed
Google Scholar
Terakita A. The opsins. Genome Biol. 2005;6:213.
Article
PubMed
PubMed Central
Google Scholar
Henze MJ, Oakley TH. The dynamic evolutionary history of Pancrustacean eyes and opsins. Integr Comp Biol. 2015;55:830–42.
Article
PubMed
Google Scholar
Cutler DE, Bennett RR, Stevenson RD, White RH. Feeding behavior in the nocturnal moth Manduca sexta is mediated mainly by violet receptors, but where are they located in the retina? J Exp Biol. 1995;198:1909–17.
Article
CAS
PubMed
Google Scholar
Weiss MR. Vision and learning in some neglected pollinators: beetles, flies, moths and butterflies. Cambridge: Cambridge University Press; 2001.
Google Scholar
Jiggins CD, Naisbit RE, Coe RL, Mallet J. Reproductive isolation caused by colour pattern mimicry. Nature. 2001;411:302–5.
Article
CAS
PubMed
Google Scholar
Bernard GD, Stavenga DG. Spectral sensitivities of retinular cells measured in intact living flies by an optical method. J Comp Physiol A. 1979;134:95–107.
Article
Google Scholar
Salcedo E, Huber A, Henrich S, Chadwell LV, Chou W-H, et al. Blue and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J Neurosci. 1999;19:10716–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Futahashi R, Kawahara-Miki R, Kinoshita M, Yoshitake K, Yajima S, et al. Extraordinary diversity of visual opsin genes in dragonflies. Proc Natl Acad Sci U S A. 2015;112:E1247-1256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suvorov A, Jensen NO, Sharkey CR, Fujimoto MS, Bodily P, et al. Opsins have evolved under the permanent heterozygote model: insights from phylotranscriptomics of Odonata. Mol Ecol. 2017;26:1306–22.
Article
CAS
PubMed
Google Scholar
Jackowska M, Bao R, Liu Z, McDonald EC, Cook TA, et al. Genomic and gene regulatory signatures of cryptozoic adaptation: loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool. 2007;4:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lord NP, Plimpton RL, Sharkey CR, Suvorov A, Lelito JP, et al. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae). BMC Evol Biol. 2016;16:107.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharkey CR, Fujimoto MS, Lord NP, Shin S, McKenna DD, et al. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep. 2017;7:8.
Article
PubMed
PubMed Central
Google Scholar
Briscoe AD. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol. 2000;51:110–21.
Article
CAS
PubMed
Google Scholar
Wang B, Xiao JH, Bian SN, Niu LM, Murphy RW, et al. Evolution and expression plasticity of opsin genes in a fig pollinator, Ceratosolen solmsi. PLoS ONE. 2013;8:e53907.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Feuda R, Lu B, Xiao H, Graham RI, et al. Functional opsin retrogene in nocturnal moth. Mob DNA. 2016;7:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Briscoe AD. Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny. Gene. 1999;230:101–9.
Article
CAS
PubMed
Google Scholar
Frentiu FD, Bernard GD, Cuevas CI, Sison-Mangus MP, Prudic KL, et al. Adaptive evolution of color vision as seen through the eyes of butterflies. Proc Natl Acad Sci U S A. 2007;104(Suppl 1):8634–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frentiu FD, Bernard GD, Sison-Mangus MP, Brower AV, Briscoe AD. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies. Mol Biol Evol. 2007;24:2016–28.
Article
CAS
PubMed
Google Scholar
Lu Y, Jiao Z, Li G, Wyckhuys KAG, Wu K. Comparative overwintering host range of three Adelphocoris species (Hemiptera: Miridae) in northern China. Crop Prot. 2011;30:1455–60.
Article
Google Scholar
Xu P, Lu B, Liu J, Chao J, Donkersley P, et al. Duplication and expression of horizontally transferred polygalacturonase genes is associated with host range expansion of mirid bugs. BMC Evol Biol. 2019;19:12.
Article
PubMed
PubMed Central
Google Scholar
Briscoe AD, Bybee SM, Bernard GD, Yuan F, Sison-Mangus MP, et al. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci U S A. 2010;107:3628–33.
Article
PubMed
PubMed Central
Google Scholar
Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M. Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol. 2012;12:163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, et al. Shedding new light on opsin evolution. Proc Biol Sci. 2011;279:3–14.
PubMed
PubMed Central
Google Scholar
Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc Biol Sci. 2012;279:5048–57.
PubMed
PubMed Central
Google Scholar
Qian W, Zhang J. Genomic evidence for adaptation by gene duplication. Genome Res. 2014;24:1356–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res. 2009;19:859–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang N, Bao Z, Zhang X, Eddy SR, Wessler SR. Pack-MULE transposable elements mediate gene evolution in plants. Nature. 2004;431:569–73.
Article
CAS
PubMed
Google Scholar
Long M, Betran E, Thornton K, Wang W. The origin of new genes: glimpses from the young and old. Nat Rev Genet. 2003;4:865–75.
Article
CAS
PubMed
Google Scholar
Wang Y, Wang X, Tang H, Tan X, Ficklin SP, et al. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS ONE. 2011;6:e28150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010;20:1313–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaessmann H, Vinckenbosch N, Long M. RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet. 2009;10:19–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashiyama K, Seki T, Numata H, Goto SG. Molecular characterization of visual pigments in Branchiopoda and the evolution of opsins in Arthropoda. Mol Biol Evol. 2009;26:299–311.
Article
CAS
PubMed
Google Scholar
Xu P, Lu B, Xiao H, Fu X, Murphy RW, et al. The evolution and expression of the moth visual opsin family. PLoS ONE. 2013;8:e78140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carleton K. Cichlid fish visual systems: mechanisms of spectral tuning. Integr Zool. 2009;4:75–86.
Article
PubMed
Google Scholar
Fuller RC, Carleton KL, Fadool JM, Spady TC, Travis J. Population variation in opsin expression in the bluefin killifish, Lucania goodei: a real-time PCR study. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2004;190:147–54.
Article
CAS
PubMed
Google Scholar
Parry JW, Carleton KL, Spady T, Carboo A, Hunt DM, et al. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Curr Biol. 2005;15:1734–9.
Article
CAS
PubMed
Google Scholar
Yokoyama S, Shi Y. Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett. 2000;486:167–72.
Article
CAS
PubMed
Google Scholar
Brosius J. Retroposons–seeds of evolution. Science. 1991;251:753.
Article
CAS
PubMed
Google Scholar
Tunnacliffe E, Corrigan AM, Chubb JR. Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. Proc Natl Acad Sci U S A. 2018;115:8364–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Song X, Yang X, Tang Z, Ren G, et al. A novel single-stranded RNA virus in Nesidiocoris tenuis. Arch Virol. 2017;162:1125–8.
Article
CAS
PubMed
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;9:644–52.
Article
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:323.
Article
CAS
Google Scholar
Löytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA. 2005;102(10):557–10562.
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
PubMed
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.
Article
PubMed
Google Scholar
Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z. Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol. 2011;58:169–80.
Article
CAS
PubMed
Google Scholar
Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.
Article
CAS
PubMed
Google Scholar
Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics. 1998;148:929–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analyses by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Wertheim JO, Murrell B, Smith MD, Kosakovsky Pond SL, et al. RELAX: detecting relaxed selection in a phylogenetic framework. Mol Biol Evol. 2014;32:820–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pond SLK, Muse SV. HyPhy: hypothesis testing using phylogenies. In. Statistical methods in molecular evolution. Springer; 2005. p. 125–181.
Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, et al. Gene-wide identification of episodic selection. Mol Biol Evol. 2015;32:1365–71.
Article
CAS
PubMed
PubMed Central
Google Scholar