Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51. https://doi.org/10.1126/science.1155725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. https://doi.org/10.1038/nature08821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kohl KD. Diversity and function of the avian gut microbiota. J Comp Physiol B. 2012;182:591–602. https://doi.org/10.1007/s00360-012-0645-z.
Article
PubMed
Google Scholar
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.
Article
CAS
PubMed
Google Scholar
Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci. 2014;111:14500–5. https://doi.org/10.1073/pnas.1319718111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shropshire JD, Bordenstein SR. Speciation by symbiosis: the microbiome and behavior. MBio. 2016;7:1–11. https://doi.org/10.1128/mBio.01785-15.
Article
Google Scholar
Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos Trans R Soc B Biol Sci. 2018;373:20170286. https://doi.org/10.1098/rstb.2017.0286.
Article
CAS
Google Scholar
Suzuki TA, Martins FM, Phifer-Rixey M, Nachman MW. The gut microbiota and Bergmann’s rule in wild house mice. Mol Ecol. 2020;29:2300–11. https://doi.org/10.1111/mec.15476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci. 2010;107:20051–6. https://doi.org/10.1073/pnas.1009906107.
Article
PubMed
PubMed Central
Google Scholar
Moeller AH, Gomes-Neto JC, Mantz S, Kittana H, Segura Munoz RR, Schmaltz RJ, et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere. 2019;4:1–10. https://doi.org/10.1128/mSphere.00387-19.
Article
Google Scholar
Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788. https://doi.org/10.1111/jav.01788.
Article
Google Scholar
Wang J, Kalyan S, Steck N, Turner LM, Harr B, Künzel S, et al. Analysis of intestinal microbiota in hybrid house mice reveals evolutionary divergence in a vertebrate hologenome. Nat Commun. 2015;6:6440. https://doi.org/10.1038/ncomms7440.
Article
CAS
PubMed
Google Scholar
Brucker RM, Bordenstein SR. Speciation by symbiosis. Trends Ecol Evol. 2012;27:443–51. https://doi.org/10.1016/j.tree.2012.03.011.
Article
PubMed
Google Scholar
Brucker RM, Bordenstein SR. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science. 2013;341:667–9. https://doi.org/10.1126/science.1240659.
Article
CAS
PubMed
Google Scholar
Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat Commun. 2018;9:1786. https://doi.org/10.1038/s41467-018-04204-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keenan SW, Engel AS, Elsey RM. The alligator gut microbiome and implications for archosaur symbioses. Sci Rep. 2013;3:2877. https://doi.org/10.1038/srep02877.
Article
PubMed
PubMed Central
Google Scholar
Lewis WB, Moore FR, Wang S. Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk. 2017;134:137–45. https://doi.org/10.1642/AUK-16-120.1.
Article
Google Scholar
Michel AJ, Ward LM, Goffredi SK, Dawson KS, Baldassarre DT, Brenner A, et al. The gut of the finch: uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome. 2018;6:167. https://doi.org/10.1186/s40168-018-0555-8.
Article
PubMed
PubMed Central
Google Scholar
Loo WT, Dudaniec RY, Kleindorfer S, Cavanaugh CM. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE. 2019;14:e0226432. https://doi.org/10.1371/journal.pone.0226432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teyssier A, Rouffaer LO, Saleh Hudin N, Strubbe D, Matthysen E, Lens L, et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci Total Environ. 2018;612:1276–86. https://doi.org/10.1016/j.scitotenv.2017.09.035.
Article
CAS
PubMed
Google Scholar
Phillips JN, Berlow M, Derryberry EP. The Effects of landscape urbanization on the gut microbiome: an exploration into the gut of urban and rural White-crowned sparrows. Front Ecol Evol. 2018;6:1–10. https://doi.org/10.3389/fevo.2018.00148.
Article
Google Scholar
Gaona O, Cerqueda-García D, Moya A, Neri-Barrios X, Falcón LI. Geographical separation and physiology drive differentiation of microbial communities of two discrete populations of the bat Leptonycteris yerbabuenae. Microbiologyopen. 2020;9:1113–27. https://doi.org/10.1002/mbo3.1022.
Article
PubMed
Google Scholar
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, et al. Composition and drivers of gut microbial communities in arctic-breeding shorebirds. Front Microbiol. 2019;10:2258. https://doi.org/10.3389/fmicb.2019.02258.
Article
PubMed
PubMed Central
Google Scholar
Gillingham MAF, Béchet A, Cézilly F, Wilhelm K, Rendón-Martos M, Borghesi F, et al. Offspring microbiomes differ across breeding sites in a panmictic species. Front Microbiol. 2019;10:1–16. https://doi.org/10.3389/fmicb.2019.00035.
Article
Google Scholar
Org E, Parks BW, Joo JWJ, Emert B, Schwartzman W, Kang EY, et al. Genetic and environmental control of host-gut microbiota interactions. Genome Res. 2015;25:1558–69. https://doi.org/10.1101/gr.194118.115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki TA, Phifer-Rixey M, Mack KL, Sheehan MJ, Lin D, Bi K, et al. Host genetic determinants of the gut microbiota of wild mice. Mol Ecol. 2019. https://doi.org/10.1111/mec.15139.
Article
PubMed
PubMed Central
Google Scholar
Kubinak JL, Stephens WZ, Soto R, Petersen C, Chiaro T, Gogokhia L, et al. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nat Commun. 2015;6:8642. https://doi.org/10.1038/ncomms9642.
Article
CAS
PubMed
Google Scholar
Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio. 2020;11:1–14. https://doi.org/10.1128/mBio.02901-19.
Article
Google Scholar
Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution (N Y). 2010;64:456–71. https://doi.org/10.1111/j.1558-5646.2009.00841.x.
Article
CAS
Google Scholar
Sorjonen J. Mixed singing and interspecific territoriality - consequences of secondary contact of two ecologically and morphologically similar nightingale species in europe. Ornis Scand. 1986;17:53. https://doi.org/10.2307/3676753.
Article
Google Scholar
Cramp S, Brooks DJ. Handbook of the birds of Europe, the Middle East and North Africa. The birds of the western Palearctic, vol. VI. Warblers. Oxford University. 1992.
Sottas C, Reif J, Kreisinger J, Schmiedová L, Sam K, Osiejuk TS, et al. Tracing the early steps of competition-driven eco-morphological divergence in two sister species of passerines. Evol Ecol. 2020. https://doi.org/10.1007/s10682-020-10050-4.
Article
Google Scholar
Reif J, Reifová R, Skoracka A, Kuczyński L. Competition-driven niche segregation on a landscape scale: evidence for escaping from syntopy towards allotopy in two coexisting sibling passerine species. J Anim Ecol. 2018;87:774–86.
Article
PubMed
Google Scholar
Sottas C, Reif J, Kuczyński L, Reifová R. Interspecific competition promotes habitat and morphological divergence in a secondary contact zone between two hybridizing songbirds. J Evol Biol. 2018;31:914–23. https://doi.org/10.1111/jeb.13275.
Article
PubMed
Google Scholar
Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio. 2015;6:1–12. https://doi.org/10.1128/mBio.00022-15.
Article
CAS
Google Scholar
Stadie C. Erdsanger I; Nachtigall und Sprosser. Eur Vogelwelt Vogelwelt. 1991;3:130–89.
Google Scholar
Reifová R, Kverek P, Reif J. The first record of a female hybrid between the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (Luscinia luscinia) in nature. J Ornithol. 2011;152:1063–8.
Article
Google Scholar
Mořkovský L, Janoušek V, Reif J, Rídl J, Pačes J, Choleva L, et al. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol Ecol. 2018;27:949–58. https://doi.org/10.1111/mec.14479.
Article
PubMed
PubMed Central
Google Scholar
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol. 2011;11:138. https://doi.org/10.1186/1471-2148-11-138.
Article
PubMed
PubMed Central
Google Scholar
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, et al. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity. 2019;122:622–35. https://doi.org/10.1038/s41437-018-0161-3.
Article
CAS
PubMed
Google Scholar
Moeller AH, Suzuki TA, Lin D, Lacey EA, Wasser SK, Nachman MW. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc Natl Acad Sci. 2017;114:13768–73. https://doi.org/10.1073/pnas.1700122114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linnenbrink M, Wang J, Hardouin EA, Künzel S, Metzler D, Baines JF. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol. 2013;22:1904–16. https://doi.org/10.1111/mec.12206.
Article
PubMed
Google Scholar
Hird SM. Evolutionary biology needs wild microbiomes. Front Microbiol. 2017;8:1–10. https://doi.org/10.3389/fmicb.2017.00725.
Article
Google Scholar
Lindsey ARI, Rice DW, Bordenstein SR, Brooks AW, Bordenstein SR, Newton ILG. Evolutionary genetics of cytoplasmic incompatibility genes cifA and cifB in prophage WO of Wolbachia. Genome Biol Evol. 2018;10:434–51. https://doi.org/10.1093/gbe/evy012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trevelline BK, Sosa J, Hartup BK, Kohl KD. A bird’s-eye view of phylosymbiosis: weak signatures of phylosymbiosis among all 15 species of cranes. Proc R Soc B Biol Sci. 2020;287:20192988. https://doi.org/10.1098/rspb.2019.2988.
Article
CAS
Google Scholar
Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200. https://doi.org/10.1038/s41467-019-10191-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kropáčková L, Těšický M, Albrecht T, Kubovčiak J, Čížková D, Tomášek O, et al. Codiversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol Ecol. 2017;26:5292–304. https://doi.org/10.1111/mec.14144.
Article
PubMed
Google Scholar
Suzuki TA, Worobey M. Geographical variation of human gut microbial composition. Biol Lett. 2014;10:20131037. https://doi.org/10.1098/rsbl.2013.1037.
Article
PubMed
PubMed Central
Google Scholar
Hird SM, Carstens BC, Cardiff SW, Dittmann DL, Brumfield RT. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ. 2014;2:e321. https://doi.org/10.7717/peerj.321.
Article
PubMed
PubMed Central
Google Scholar
Banks JC, Cary SC, Hogg ID. The phylogeography of Adelie penguin faecal flora. Environ Microbiol. 2009;11:577–88. https://doi.org/10.1111/j.1462-2920.2008.01816.x.
Article
CAS
PubMed
Google Scholar
Hird SM, Sánchez C, Carstens BC, Brumfield RT. Comparative gut microbiota of 59 neotropical bird species. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.01403.
Article
PubMed
PubMed Central
Google Scholar
Pigot AL, Tobias JA. Dispersal and the transition to sympatry in vertebrates. Proc R Soc B Biol Sci. 2015;282:20141929. https://doi.org/10.1098/rspb.2014.1929.
Article
Google Scholar
Hahn S, Amrhein V, Zehtindijev P, Liechti F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia. 2013;173:1217–25. https://doi.org/10.1007/s00442-013-2726-4.
Article
PubMed
Google Scholar
Kropáčková L, Pechmanová H, Vinkler M, Svobodová J, Velová H, Těšičký M, et al. Variation between the oral and faecal microbiota in a free-living passerine bird, the great tit (Parus major). PLoS ONE. 2017;12:e0179945. https://doi.org/10.1371/journal.pone.0179945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bodawatta KH, Sam K, Jønsson KA, Poulsen M. Comparative analyses of the digestive tract microbiota of new guinean passerine birds. Front Microbiol. 2018;9:1–13. https://doi.org/10.3389/fmicb.2018.01830.
Article
Google Scholar
Lewis WB, Moore FR, Wang S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J Avian Biol. 2016;47:659–68. https://doi.org/10.1111/jav.00954.
Article
Google Scholar
García-Amado MA, Shin H, Sanz V, Lentino M, Martínez LM, Contreras M, et al. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE. 2018;13:e0194857. https://doi.org/10.1371/journal.pone.0194857.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berlow M, Kohl KD, Derryberry EP. Evaluation of non-lethal gut microbiome sampling methods in a passerine bird. Ibis (Lond 1859). 2020;162:911–23. https://doi.org/10.1111/ibi.12807.
Article
Google Scholar
Zhang Y, Simon SE, Johnson JA, Allen MS. Spatial microbial composition along the gastrointestinal tract of captive Attwater’s prairie chicken. Microb Ecol. 2017;73:966–77. https://doi.org/10.1007/s00248-016-0870-1.
Article
CAS
PubMed
Google Scholar
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1–e1. https://doi.org/10.1093/nar/gks808.
Article
CAS
PubMed
Google Scholar
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014;15:182. https://doi.org/10.1186/1471-2105-15-182.
Article
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200. https://doi.org/10.1093/bioinformatics/btr381.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7. https://doi.org/10.1128/AEM.00062-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Knight A, Ewen JG, Brekke P, Santure AW. The evolutionary biology, ecology and epidemiology of Coccidia of Passerine birds. Adv Parasitol. 2018;99:35–60. https://doi.org/10.1016/bs.apar.2018.01.001.
Article
PubMed
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Oksanen AJ, Blanchet GF, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. The vegan package. Community Ecol Packag. 2016;10:631–7.
Google Scholar
Legendre P, Andersson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24.
Article
Google Scholar
Dray S, Dufour A-B. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20. https://doi.org/10.18637/jss.v022.i04.
Article
Google Scholar
Kindt R, Coe R. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre; 2005.
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, et al. GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017;9:378. https://doi.org/10.32614/RJ-2017-066.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar