Ran J-H, Shen T-T, Wang M-M, Wang X-Q. Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms. Proc R Soc B. 2018;285:20181012.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lu Y, Ran J-H, Guo D-M, Yang ZY, Wang X-Q. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS One. 2014;9:e107679.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S. Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A. 2012;109:16217–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farjon A. A handbook of the world's conifers (2 Vols.). Leiden: Brill; 2017.
Book
Google Scholar
Brodribb TJ, Feild TS, Jordan GJ. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol. 2007;144:1890–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pittermann J, Stuart SA, Dawson TE, Moreau A. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc Natl Acad Sci U S A. 2012;109:9647–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dörken VM, Lepetit B. Morpho-anatomical and physiological differences between sun and shade leaves in Abies alba mill. (Pinaceae, Coniferales): a combined approach. Plant Cell Environ. 2018;41:1683–97.
Article
PubMed
CAS
Google Scholar
Leslie AB, Losada JM. Reproductive ontogeny and the evolution of morphological diversity in conifers and other plants. Integr Comp Biol. 2019;59:548–58.
Article
CAS
PubMed
Google Scholar
Jankowski A, Wyka TP, Żytkowiak R, Nihlgård B, Reich PB, Oleksyn J, Kudo G. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L. along a 1,900 km temperate-boreal transect. Funct Ecol. 2017;31:2212–23.
Article
Google Scholar
Eckenwalder JE. Conifers of the world: the complete reference. Oregon: Timber Press; 2009.
Google Scholar
Ran J-H, Shen T-T, Wu H, Gong X, Wang X-Q. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol. 2018;129:106–16.
Article
CAS
PubMed
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.
Article
CAS
PubMed
Google Scholar
Inanc B, Anthony R, Jackman SD, Stephen P, Robin C, Taylor GA, Saint YMM, Keeling CI, Dana B, Vandervalk BP, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29:1492–7.
Article
CAS
Google Scholar
Stevens KA, Wegrzyn J, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeaz D, Koriabine M, Holtz-Morris A, et al. Sequence of the sugar pine megagenome. Genetics. 2016;204:1613–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conklin PA, Strable J, Li S, Scanlon MJ. On the mechanisms of development in monocot and eudicot leaves. New Phytol. 2019;221:706–24.
Article
PubMed
Google Scholar
Fukushima K, Hasebe M. Adaxial–abaxial polarity: the developmental basis of leaf shape diversity. Genesis. 2014;52:1–18.
Article
PubMed
Google Scholar
Sanders H, Rothwell GW, Wyatt S. Paleontological context for the developmental mechanisms of evolution. Int J Plant Sci. 2007;168:719–28.
Article
CAS
Google Scholar
Kalve S, De Vos D, Beemster GTS. Leaf development: a cellular perspective. Front Plant Sci. 2014;5:362.
Article
PubMed
PubMed Central
Google Scholar
Waites R, Hudson A. Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development. 1995;121:2143–54.
CAS
Google Scholar
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol. 2003;13:1768–74.
Article
CAS
PubMed
Google Scholar
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development. 1999;126:4117–28.
CAS
PubMed
Google Scholar
Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. Wires Dev Biol. 2015;4:655–71.
Article
CAS
Google Scholar
Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell. 2005;17:2899–910.
Article
CAS
PubMed
PubMed Central
Google Scholar
Townsley BT, Sinha NR. A new development: evolving concepts in leaf ontogeny. Annu Rev Plant Biol. 2012;63:535–62.
Article
CAS
PubMed
Google Scholar
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell. 2005;17:61–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature. 2004;428:81–4.
Article
CAS
PubMed
Google Scholar
Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C. Expression of the ASYMMETRIC LEAVES2 gene in the adaxial domain of Arabidopsis LEAVES represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J. 2007;51:173–84.
Article
CAS
PubMed
Google Scholar
Garcia D, Collier SA, Byrne ME, Martienssen RA. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol. 2006;16:933–8.
Article
CAS
PubMed
Google Scholar
Iwasaki M, Takahashi H, Iwakawa H, Nakagawa A, Ishikawa T, Tanaka H, Matsumura Y, Pekker I, Eshed Y, Vial-Pradel S, et al. Dual regulation of ETTIN (ARF3) gene expression by AS1-AS2, which maintains the DNA methylation level, is involved in stabilization of leaf adaxial-abaxial partitioning in Arabidopsis. Development. 2013;140:1958–69.
Article
CAS
PubMed
Google Scholar
Franck DH. The morphological interpretation of epiascidiate leaves—An historical perspective. Bot Rev. 1976;42:345–88.
Article
Google Scholar
Yamaguchi T, Yano S, Tsukaya H. Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell. 2010;22:2141–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaguchi T, Tsukaya H. Evolutionary and developmental studies of unifacial leaves in monocots: Juncus as a model system. J Plant Res. 2010;123:35.
Article
PubMed
Google Scholar
Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196:875–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harrison CJ, Morris JL. The origin and early evolution of vascular plant shoots and leaves. Phil Trans R Soc B. 2018;373:20160496.
Article
PubMed
CAS
Google Scholar
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant’s phylogeny: lessons for improving crop photosynthesis. Plant J. 2020;101:964–78.
Article
CAS
PubMed
Google Scholar
Brodribb TJ, Feild TS, Sack L. Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol. 2010;37:488–98.
Article
Google Scholar
Brodribb TJ, Feild TS. Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest. New Phytol. 2007;178:201–9.
Article
Google Scholar
Sarojam R, Sappl PG, Goldshmidt A, Efroni I, Floyd SK, Eshed Y, Bowman JL. Differentiating Arabidopsis shoots from leaves by combined YABBY activities. Plant Cell. 2010;22:2113–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finet C, Floyd SK, Conway SJ, Zhong B, Scutt CP, Bowman JL. Evolution of the YABBY gene family in seed plants. Evol Dev. 2016;18:116–26.
Article
PubMed
Google Scholar
Floyd SK, Zalewski CS, Bowman JL. Evolution of class III homeodomain–leucine zipper genes in streptophytes. Genetics. 2006;173:373–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prigge MJ, Clark SE. Evolution of the class III HD-Zip gene family in land plants. Evol Dev. 2006;8:350–61.
Article
CAS
PubMed
Google Scholar
Vasco A, Smalls TL, Graham SW, Cooper ED, Wong KS, Stevenson DW, Moran RC, Ambrose BA. Challenging the paradigms of leaf evolution: class III HD-zips in ferns and lycophytes. New Phytol. 2016;212:745–58.
Article
CAS
PubMed
Google Scholar
Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature. 2000;408:967–71.
Article
CAS
PubMed
Google Scholar
Timmermans MCP, Hudson A, Becraft PW, Nelson T. ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science. 1999;284:151–3.
Article
CAS
PubMed
Google Scholar
Waites R, Selvadurai H, Oliver I, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 1998;93:779–89.
Article
CAS
PubMed
Google Scholar
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature. 2001;411:709–13.
Article
CAS
PubMed
Google Scholar
Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H. Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development. 2003;130:4097–107.
Article
CAS
PubMed
Google Scholar
McConnell JR, Barton MK. Leaf polarity and meristem formation in Arabidopsis. Development. 1998;125:2935–42.
CAS
PubMed
Google Scholar
Ueno Y, Ishikawa T, Watanabe K, Terakura S, Iwakawa H, Okada K, Machida C, Machida Y. Histone deacetylases and ASYMMETRIC LEAVES2 are involved in the establishment of polarity in LEAVES of Arabidopsis. Plant Cell. 2007;19:445–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gago J, Carriquí M, Nadal M, Clemente-Moreno MJ, Coopman RE, Fernie AR, Flexas J. Photosynthesis optimized across land plant phylogeny. Trends Plant Sci. 2019;24:947–58.
Article
CAS
PubMed
Google Scholar
Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 2012;193:70–84.
Article
PubMed
CAS
Google Scholar
Carriquí M, Roig-Oliver M, Brodribb TJ, Coopman R, Gill W, Mark K, Niinemets Ü, Perera-Castro AV, Ribas-Carbó M, Sack L, et al. Anatomical constraints to nonstomatal diffusion conductance and photosynthesis in lycophytes and bryophytes. New Phytol. 2019;222:1256–70.
Article
PubMed
CAS
Google Scholar
Carriquí M, Cabrera H, Conesa M, Coopman R, Douthe C, Gago J, Gallé A, Galmés J, Ribas-Carbó M, Tomás M, et al. Diffusional limitations explain the lower photosynthetic capacity of ferns as compared with angiosperms in a common garden study. Plant Cell Environ. 2015;38:448–60.
Article
PubMed
CAS
Google Scholar
Peguero-pina JJ, Flexas J, Galmes J, Niinemets U, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrin E. Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ. 2012;35:2121–9.
Article
CAS
PubMed
Google Scholar
Smith WK, Vogelmann TC, H. DE, Bell DT, Shepherd KA. Leaf form and photosynthesis. Bioscience. 1997;47:785–93.
Article
Google Scholar
Farjon A. Monograph of Cupressaceae and Sciadopitys. Kew: Royal Botanic Gardens, Kew; 2005.
Google Scholar
Farjon A. A handbook of the World's conifers. Leiden: Brill; 2010.
Book
Google Scholar
Biffin E, Brodribb TJ, Hill RS, Thomas P, Lowe AJ. Leaf evolution in southern hemisphere conifers tracks the angiosperm ecological radiation. Proc R Soc B. 2012;279:341–8.
Article
PubMed
Google Scholar
Gadek PA, Alpers DL, Heslewood MM, Quinn CJ. Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. Am J Bot. 2000;87:1044–57.
Article
CAS
PubMed
Google Scholar
Wang G-H, Zhao H-W, An M, Li H, Zhang W-K. Detecting the driving forces underlying the divergence of spruce forests in China: evidence from phytocoenology, morphology and phylogenetics. J Plant Ecol. 2019;13:59–69.
Article
Google Scholar
Bartholmes C, Hidalgo O, Gleissberg S. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Plant Biol. 2012;14:11–23.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. 1999;41:95–8.
CAS
Google Scholar
Wu M, Chatterji S, Eisen JA. Accounting for alignment uncertainty in phylogenomics. PLoS One. 2012;7:e30288.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol. 2013;30:1720–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewer PB, Heisler MG, Hejátko J, Friml J, Benková E. In situ hybridization for mRNA detection in Arabidopsis tissue sections. Nat Protoc. 2006;1:1462–7.
Article
CAS
PubMed
Google Scholar