Adelmann HB. The problem of cyclopia, Pt. 1. Quart Rev Biol. 1936;11:161–82.
Article
Google Scholar
Ballard WA. A new fate map for ‘Salmo gairdneri’. J Exp Zool. 1973;184:49–73.
Article
Google Scholar
Bazin-Lopez N, Valdivia LE, Wilson SW, Gestr G. Watching eyes take shape. Curr Opin Genet Dev. 2015;32:73–9. https://doi.org/10.1016/j.gde.2015.02.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavodeassi F. Dynamic tissue rearrangements during vertebrate eye morphogenesis: Insights from fish models. J Dev Biol. 2018;6(1):4. https://doi.org/10.3390/jdb6010004.
Article
CAS
PubMed Central
Google Scholar
Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, et al. Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature. 1996;383:407–13. https://doi.org/10.1038/383407a0.
Article
CAS
PubMed
Google Scholar
Chow RL, Lang RA. Early eye development in vertebrates. Annu Rev Cell Dev Biol. 2001;17:255–96. https://doi.org/10.1146/annurev.cellbio.17.1.255.
Article
CAS
PubMed
Google Scholar
Ciruna B, Jenny A, Lee D, Mlodzik M, Schier AF. Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature. 2006;439:220–4. https://doi.org/10.1038/nature04375.
Article
CAS
PubMed
PubMed Central
Google Scholar
Compagnon J, Heisenberg C-P. Neurulation: coordinating cell polarisation and lumen formation. EMBO J. 2012;32:1–3. https://doi.org/10.1038/emboj.2012.325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Copp AJ, Greene NDE, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet. 2003;4:784–93. https://doi.org/10.1038/nrg1181.
Article
PubMed
Google Scholar
Cronly-Dillon JR, Gregory RL. Origin of invertebrate and vertebrate eyes. (Chapter 2): Vision and visual dysfunction (2): Evolution of the eye and visual system. London: Macmillan Press Ltd; 1991. p. 2–42.
De Miguel E, Rodicio MC, Anadon R. Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol. 1990;302(3):529–42.
Article
Google Scholar
Deiner MS, Sretavan DW. Altered midline axon pathways and ectopic neurons in the developing hypothalamus of netrin-1- and DCC-deficient mice. J Neurosci. 1999;19(22):9900–12. https://doi.org/10.1523/JNEUROSCI.19-22-09900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Easter SS, Ross LS, Frankfurter A. Initial tract formation in the mouse brain. J Neurosci. 1993;13:285–99.
Article
Google Scholar
Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA, Moon RT, et al. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr.Biol. 1995;5:944–55. https://doi.org/10.1016/S0960-9822(95)00185-0.
Article
CAS
PubMed
Google Scholar
England SJ, Blanchard GB, Mahadevan L, Adams RJ. A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia. Development. 2006;133:4613–7. https://doi.org/10.1242/dev.02678.
Article
CAS
PubMed
Google Scholar
Erskine L, Hererra E. Connecting the retina to the brain. ASN Neurol. 2014;6(6):Oct–Dec. https://doi.org/10.1177/1759091414562107.
Article
Google Scholar
Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, et al. Zebrafish organiser development and germ-layer formation require nodal-related signals. Nature. 1998;395:181–5. https://doi.org/10.1038/26013.
Article
CAS
PubMed
Google Scholar
Fuhrman S, Zou C, Levine EM. Retinal pigment epithelium development, plasticity, and tissue homeostasis. Exp Eye Res. 2014;123:141–50. https://doi.org/10.1016/j.exer.2013.09.003.
Article
CAS
Google Scholar
Fuhrmann S. Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol. 2010;93:61–84. https://doi.org/10.1016/B978-0-12-385044-7.00003-5.
Article
PubMed
PubMed Central
Google Scholar
Gabbott S, Donoghue PCJ, Sansom RS, Vinther J, Dolocan A, Purnell MA. Pigmented anatomy in carboniferous cyclostomes and the evolution of the vertebrate eye. Proc Royal Soc B Biol Sci. 2016;283(1836):20161151. https://doi.org/10.1098/rspb2016.1151.
Article
Google Scholar
Gee H. Across the bridge: understanding the origins of vertebrates. Chicago: University of Chicago Press; 2018.
Geldmacher-Voss B, Reugels AM, Pauls S, Campos-Ortego JA. A 90-degree rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells. Development. 2003;130:3767–80. https://doi.org/10.1242/dev.00603.
Article
CAS
PubMed
Google Scholar
Giger FA, Houart C. The birth of the eye vesicle: When fate decision equals morphogenesis. Front Neurosci. 2018;12:87. https://doi.org/10.3389/fnins.2018.00087.
Article
PubMed
PubMed Central
Google Scholar
Greene NDE, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn. 2009;29:303–11. https://doi.org/10.1002/pd.2206.
Article
CAS
PubMed
Google Scholar
Gripp KW, Wotton D, Edwards MC, Roessler E, Ades L, Meinecke P, Richieri-Costa A, Zackai EH, Massague J, Muenke M, et al. Mutations in TGIF cause holoprosencephaly and link NODAL signaling to human neural axis determination. Nat Genet. 2000;25:205–8. https://doi.org/10.1038/76074.
Article
CAS
PubMed
Google Scholar
Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF. The EGF-CFC protein one-eyed pinhead is essential for nodal signalling. Cell. 1999;97:121–32. https://doi.org/10.1016/S0092-8674(00)80720-5.
Article
CAS
PubMed
Google Scholar
Hatta K, Kimmel CB, Ho RK, Walker C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature. 1991;350:339–41. https://doi.org/10.1038/350339a0.
Article
CAS
PubMed
Google Scholar
Hatta K, Puschel AW, Kimmel CB. Midline signaling in the primordium of the zebrafish anterior central nervous system. Proc Natl Acad Sci U S A. 1994;91:2061–5.
Article
CAS
Google Scholar
Heavner W, Pevney L. Eye development and retinogenesis. Cold Spring Harb Perspect Biol. 2012;4:a008391. https://doi.org/10.1101/cshperspect.a008391.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hererra E, Garcia-Frivola C. Genetics and development of the optic chiasm. Front Biosci. 2008;13:1646–53. https://doi.org/10.2741/2788.
Article
Google Scholar
Hirose G, Jacobson M. Clonal organization of the central nervous system of the frog. I. Clones stemming from individual blastomeres of the 16-cell and earlier stages. Dev Biol. 1979;71:191–202.
Article
CAS
Google Scholar
Ivanovitch K, Cavodeassi F, Wilson SW. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev Cell. 2013;27:293–305. https://doi.org/10.1016/j.devcel.2013.09.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jacobson M, Hirose G. Origin of the retina from both sides of the embryonic brain: a contribution to the problem of crossing at the optic chiasma. Science. 1978;202:637–9.
Article
CAS
Google Scholar
Jeffery G. Architecture of the optic chiasm and the mechanisms that sculpt its development. Physiol Rev. 2001;81:1393–414. https://doi.org/10.1152/physrev.2001.81.4.1393.
Article
CAS
PubMed
Google Scholar
Jeffery G, Erskine L. Variations in the architecture and development of the vertebrate optic chiasm. Prog Retin Eye Res. 2005;24:721–53. https://doi.org/10.1016/j.preteyeres.2005.04.005.
Article
PubMed
Google Scholar
Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P. Mechanisms of convergence and extension by cell intercalation. Phil Trans Royal Soc London B: Biol Sci. 2000;355:897–922. https://doi.org/10.1098/rstb.2000.0626.
Article
CAS
Google Scholar
Keller R, Shih J, Sater AK, Moreno C. Planar induction of convergence and extension of the neural plate by the organiser of Xenopus. Dev Dyn. 1992;193:218–34. https://doi.org/10.1002/aja.1001930303.
Article
CAS
PubMed
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullman B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
Article
CAS
Google Scholar
Kimmel CB, Warga RM, Kane DA. Cell cycles and clonal strings during formation of the zebrafish central nervous system. Development. 1994;120:265–76.
CAS
PubMed
Google Scholar
Kusunoki T, Amemiya F. Retinal projections in the hagfish, Eptatretus burgeri. Brain Res. 1983;262:295–8.
Article
CAS
Google Scholar
Kwan KM, et al. A complex choreography of cell movements shapes the vertebrate eye. Development. 2012;139(2):359–72. https://doi.org/10.1242/dev.071407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lacalli TC. Apical orgins, epithelial domains, and the origin of the chordate central nervous system. Amer Zool. 1994;34:533–41. https://doi.org/10.1093/icb/34.4.533.
Article
Google Scholar
Lacalli TC. Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Phil Trans R Soc London B. 1996;351:243–63. https://doi.org/10.1098/rstb.1996.0022.
Article
Google Scholar
Lamb TD, Collin SP, Pugh EN Jr. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci. 2007;8:960–76. https://doi.org/10.1038/nrn2283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leroi A. Mutants: on the form, varieties and errors of the human body. London: Harper Perennial; 2003.
Google Scholar
Li H, Tierney G, Wen L, Wu JY, Rao Y. A single morphogenetic field gives rise to two retinal primordia under the influence of the prechordal plate. Development. 1997;124:603–15.
CAS
PubMed
PubMed Central
Google Scholar
Loosemore RG. The inversion hypothesis: a novel explanation for the contralaterality of the human brain. Biosci Hypotheses. 2009;2(6):375–82. https://doi.org/10.1016/j.bihy.2009.08.001.
Article
Google Scholar
Loosemore RG. The evolution of forebrain contralaterality as a response to eye development: the path of least resistance. Hypotheses Life Sci. 2011a;1(1):11–20.
Google Scholar
Loosemore RG. Contralateral translocation of progenitor retinal cells observed on bifurcation of the primordial eye field is predicted by the inversion hypothesis. Hypotheses Life Sci. 2011b;1(2):46–51.
Google Scholar
Luo L, Flanagan JG. Development of continuous and discrete neurological maps. Neuron. 2007;56:284–300. https://doi.org/10.1016/j.neuron.2007.10.014.
Article
CAS
PubMed
Google Scholar
MacDonald R, Wilson SW. Pax proteins and eye development. Curr Opin Neurobiol. 1996;6:49–56. https://doi.org/10.1016/S0959-4388(96)80008-0.
Article
CAS
PubMed
Google Scholar
Marcus R, Mason C. The first retinal axon growth in the mouse optic chiasm: axon patterning and the cellular environment. J Neurosci. 1995;15(10):6389–402.
Article
CAS
Google Scholar
Marlow F, Zwartkruis F, Malicki J, Neuhauss SCF, Abbas L, Weaver M, Driever W, Solnica-Krezel L. Functional interactions of genes mediating convergent extension, knypek and trilobite, during the portioning of the eye primordium in zebrafish. Dev Biol. 1998;203:382–99.
Article
CAS
Google Scholar
Martinez-Morales JR, Wittbrodt J. Shaping the vertebrate eye. Curr Opin Genet Dev. 2009;19(5):511–7. https://doi.org/10.1016/j.gde.2009.08.003.
Article
CAS
PubMed
Google Scholar
Mason CA, Sretavan DW. Glia, neurons, and axon pathfinding during optic chiasm development. Curr Opin Neurobiol. 1997;7:647–53.
Article
CAS
Google Scholar
McLoon SC, Barnes RB. Early differentiation of retinal ganglion cells: an axonal protein expressed by premigratory and migrating retinal ganglion cells. J Neurosci. 1989;9:1424–32.
Article
CAS
Google Scholar
Mogi K, Misawa K, Utsunomiya K, Kawada Y, Yamazaki T, Takeuchi S, Toyoizumi R. Optic chiasm in the species of order Clupeiformes, family Clupeidae: optic chiasm of Spratelloides gracilis shows an opposite laterality to that of Etrumeus teres. Laterality. 2009;14(5):495–514. https://doi.org/10.1080/13576500802628160.
Article
PubMed
PubMed Central
Google Scholar
Nilsson D-E. Eye evolution and its functional basis. Vis Neurosci. 2013;30(1–2):5–20. https://doi.org/10.1017/S0952523813000035.
Article
PubMed
PubMed Central
Google Scholar
Nilsson D-E, Pelger S. A pessimistic estimate of the time required for an eye to evolve. Proc R Soc Lond B. 1994;256:53–8.
Article
CAS
Google Scholar
Pacal M, Bremner R. Induction of the ganglion cell differentiation program in human retinal progenitors before cell cycle exit. Dev Dynamics. 2014;243:712–29. https://doi.org/10.1002/dvdy.24103.
Article
CAS
Google Scholar
Pera EM, Kessel M. Patterning of the chick forebrain anlage by the prechordal plate. Development. 1997;124(20):4153–62.
CAS
PubMed
Google Scholar
Prasov L, Glaser T. Dynamic expression of ganglion cell markers in retinal progenitors during the terminal cell cycle. Mol Cell Neurosci. 2012;50:160–8. https://doi.org/10.1016/j.mcn.2012.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rebagliati MR, Toyama R, Haffter P, Dawid IB. Cyclops encodes a nodal-related factor involved in midline signaling. Proc Natl Acad Sci U S A. 1998;95:9932–7.
Article
CAS
Google Scholar
Rembold M, Loosli F, Adams RJ, Wittbrodt J. Individual cell migration serves as the driving force for optic vesicle evagination. Science. 2006;313:1130–4. https://doi.org/10.1126/science.1127144.
Article
CAS
PubMed
Google Scholar
Sadler TW. Embryology of neural tube development. Am J Med Genet Part C (Semin. Med. Genetic.). 2005;135C:2–8. https://doi.org/10.1002/ajmg.c.30049.
Article
CAS
Google Scholar
Sampath K, Rubinstein AL, Cheng AM, Liang JO, Fekany K, Solnica-Krezel L, Korzh V, Halpern ME, Wright CV. Induction of zebrafish ventral brain and floor plate requires Cyclops/nodal signaling. Nature. 1998;395:185–9. https://doi.org/10.1038/26020.
Article
CAS
PubMed
Google Scholar
Sarnat HB, Netsky MG. Evolution of the nervous system. New York: Oxford Uni Press, Chicago; 1981.
Google Scholar
Schmitt EA, Dowling JE. Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol. 1994;344(4):532–42. https://doi.org/10.1002/cne.903440404.
Article
CAS
PubMed
Google Scholar
Schoenwolf GC, Alvarez IS. Roles of neuroepithelial cell arrangement and division in shaping of the avian neural plate. Development. 1989;106:427–39.
CAS
PubMed
Google Scholar
Silver J. Studies on the factors that govern directionality of axonal growth in the embryonic optic nerve and at the chiasm of mice. J Comp Neurol. 1984;223:238–51.
Article
CAS
Google Scholar
Sinn R, Wittbrodt J. An eye on development. Mech Dev. 2013;130:347–58. https://doi.org/10.1016/j.mod.2013.05.001.
Article
CAS
PubMed
Google Scholar
Sretavan DW, Feng L, Pure E, Reichardt LF. Embryonic neurons of the developing optic chiasm express L1 and CD44, cell surface molecules with opposing effects on retinal axon growth. Neuron. 1994;12:957–75.
Article
CAS
Google Scholar
Sretavan DW, Pure E, Siegel MW, Reichardt LF. Disruption of retinal axon ingrowth by ablation of embryonic mouse optic chiasm neurons. Science. 1995;269(5220):98–101. https://doi.org/10.1126/science.7541558.
Article
CAS
PubMed
Google Scholar
Tawk M, Araya C, Lyons DA, Reugels AM, Girdler GC, Bayley PR, Hyde DR, Tada M, Clarke JDW. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis. Nature. 2007;446:797–800. https://doi.org/10.1038/nature05722.
Article
CAS
PubMed
Google Scholar
Van der Brugghen G. Ciderius cooperi gen. nov., sp. nov., the earliest known euphaneropid from the lower Silurian of Scotland. Netherlands J Geosci. 2015;94(3):279–88. https://doi.org/10.1017/njg.2015.18.
Article
Google Scholar
Varga ZM, Wegner J, Westerfield M. Anterior movement of ventral diencephalic precursor separates the primordial eye field in the neural plate and requires Cyclops. Development. 1999;126:5533–46.
CAS
PubMed
Google Scholar
Vopalensky P, Pergner J, Liegertova M, Benito-Gutierrez E, Arendt D, Kozmik Z. Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc Nat Acad Sci USA. 2012;109(38):15383–8. https://doi.org/10.1073/pnas.1207580109/-/DCSupplemental.
Article
CAS
PubMed
Google Scholar
Waid DK, McLoon SC. Immediate differentiation of ganglion cells following mitosis in the developing retina. Neuron. 1995;14:117–24.
Article
CAS
Google Scholar
Walls GL. The vertebrate eye. Bloomfield Hills: Cranbrook Institute of Science; 1942.
Google Scholar
Woo K, Fraser SE. Order and coherence in the fate map in the zebrafish nervous system. Development. 1995;121:2595–609.
CAS
PubMed
Google Scholar