Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Ingram KK, Das I. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22(3):148–55 https://doi.org/10.1016/j.tree.2006.11.004.
Article
PubMed
Google Scholar
Pfenninger M, Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol. 2007;7:121 https://doi.org/10.1186/1471-2148-7-121.
Article
PubMed
PubMed Central
Google Scholar
Erséus C, Gustafsson D. Cryptic speciation in clitellate model organisms. In: Shain DH, editor. Annelids in modern biology. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2009. p. 31–46. https://doi.org/10.1002/9780470455203.ch3.
Chapter
Google Scholar
Nygren A. Cryptic polychaete diversity: a review. Zool Scr. 2014;43(2):172–83 https://doi.org/10.1111/zsc.12044.
Article
Google Scholar
Liu Y, Fend SV, Martinsson S, Erséus C. Extensive cryptic diversity in the cosmopolitan sludge worm Limnodrilus hoffmeisteri (Clitellata, Naididae). Org Divers Evol. 2017;17(2):477–95 https://doi.org/10.1007/s13127-016-0317-z.
Article
Google Scholar
Fujita MK, Leache AD, Burbrink FT, McGuire JA, Moritz C. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol Evol. 2012;27(9):480–8 https://doi.org/10.1016/j.tree.2012.04.012.
Article
PubMed
Google Scholar
Rannala B. The art and science of species delimitation. Curr Zool. 2015;61(5):846–53.
Article
Google Scholar
Klinth MJ, Martinsson S, Erséus C. Phylogeny and species delimitation of north European Lumbricillus (Clitellata, Enchytraeidae). Zool Scr. 2017;46(1):96–110 https://doi.org/10.1111/zsc.12187.
Article
Google Scholar
Taheri S, James S, Roy V, Decaens T, Williams BW, Anderson F, Rougerie R, Chang CH, Brown G, Cunha L, Stanton DWG, Da Silva E, Chen JH, Lemmon AR, Moriarty Lemmon E, Bartz M, Baretta D, Barois I, Lapied E, Coulis M, Dupont L. Complex taxonomy of the 'brush tail' peregrine earthworm Pontoscolex corethrurus. Mol Phylogenet Evol. 2018;124:60–70 https://doi.org/10.1016/j.ympev.2018.02.021.
Article
CAS
PubMed
Google Scholar
Martinsson S, Erséus C. Hybridisation and species delimitation of Scandinavian Eisenia spp. (Clitellata: Lumbricidae). Eur J Soil Biol. 2018;88:41–7 https://doi.org/10.1016/j.ejsobi.2018.06.003.
Article
CAS
Google Scholar
Martinsson S, Rhodén C, Erséus C. Barcoding gap, but no support for cryptic speciation in the earthworm Aporrectodea longa (Clitellata: Lumbricidae). Mitochondrial DNA. 2017;28(2):147–55 https://doi.org/10.3109/19401736.2015.1115487.
Article
CAS
PubMed
Google Scholar
Erséus C, Klinth MJ, Rota E, De Wit P, Gustafsson DR, Martinsson S. The popular model annelid Enchytraeus albidus is only one species in a complex of seashore white worms (Clitellata, Enchytraeidae). Org Divers Evol. 2019;19(2):105–33 https://doi.org/10.1007/s13127-019-00402-6.
Article
Google Scholar
Vogel Ely C, Bordignon SAL, Trevisan R, Boldrini II. Implications of poor taxonomy in conservation. J Nat Conserv. 2017;36:10–3 https://doi.org/10.1016/j.jnc.2017.01.003.
Article
Google Scholar
Scherz MD, Glaw F, Hutter CR, Bletz MC, Rakotoarison A, Kohler J, Vences M. Species complexes and the importance of data deficient classification in red list assessments: the case of Hylobatrachus frogs. PLoS One. 2019;14(8):e0219437 https://doi.org/10.1371/journal.pone.0219437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson-Watts I, Walls S, Jones G. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biol Conserv. 2006;133(1):118–27 https://doi.org/10.1016/j.biocon.2006.05.027.
Article
Google Scholar
Feckler A, Thielsch A, Schwenk K, Schulz R, Bundschuh M. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci Total Environ. 2012;439:158–64 https://doi.org/10.1016/j.scitotenv.2012.09.003.
Article
CAS
PubMed
Google Scholar
Sturmbauer C, Opadiya GB, Niederstätter H, Riedmann A, Dallinger R. Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol Biol Evol. 1999;16(7):967–74.
Article
CAS
PubMed
Google Scholar
Cothran RD, Henderson KA, Schmidenberg D, Relyea RA. Phenotypically similar but ecologically distinct: differences in competitive ability and predation risk among amphipods. Oikos. 2013;122(10):1429–40 https://doi.org/10.1111/j.1600-0706.2013.00294.x.
Google Scholar
Hambäck PA, Weingartner E, Ericson L, Fors L, Cassel-Lundhagen A, Stenberg JA, Bergsten J. Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host. BMC Evol Biol. 2013;13(1):92 https://doi.org/10.1186/1471-2148-13-92.
Article
PubMed
PubMed Central
Google Scholar
Zhang C, Zhang DX, Zhu T, Yang Z. Evaluation of a bayesian coalescent method of species delimitation. Syst Biol. 2011;60(6):747–61 https://doi.org/10.1093/sysbio/syr071.
Article
PubMed
Google Scholar
Lowe CN, Butt KR. Life-cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biol Fertil Soils. 2006;43(4):495–9 https://doi.org/10.1007/s00374-006-0154-x.
Article
Google Scholar
Eisenring M, Altermatt F, Westram AM, Jokela J, Peters DPC. Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere. 2016;7(5) https://doi.org/10.1002/ecs2.1319.
Friend H. New British annelids. The zoologist (series 4). 1899;3:262–5.
Google Scholar
Michaelsen W. Synopsis de Enchytraeiden. Abhandlungen aus dem Gebiete der Naturwissenschaften herausgegeben vom Naturwissenschaftlichen Verein in Hamburg. 1889;11(1–61).
Rota E. Oversized enchytraeids (Annelida, Clitellata): a comparative study, with a revised description of (Michaelsen). Org Divers Evol. 2001;1(3):225–38 https://doi.org/10.1078/1439-6092-00019.
Article
Google Scholar
Schmelz RM (2003) Taxonomy of Fridericia (Oligochaeta, Enchytraeidae). Revision of species with morphological and biochemical methods. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg (Neue Folge) 38:415 + 437 figs.
Botea F. Enchtréidés (Oligochaeta) du domaine soutrerrain de Roumanie, Note 2. Travaux de l'Institut de Spéologie Émile Racovitza. 1973;12:87–111.
Google Scholar
Erséus C, Rota E, Matamoros L, De Wit P. Molecular phylogeny of Enchytraeidae (Annelida, Clitellata). Mol Phylogenet Evol. 2010;57(2):849–58 https://doi.org/10.1016/j.ympev.2010.07.005.
Article
PubMed
CAS
Google Scholar
de Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56(6):879–86 https://doi.org/10.1080/10635150701701083.
Article
PubMed
Google Scholar
Doyle JJ. The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Syst Bot. 1995;20(4):574–88 https://doi.org/10.2307/2419811.
Article
Google Scholar
Flot JF, Couloux A, Tillier S. Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol Biol. 2010;10:372 https://doi.org/10.1186/1471-2148-10-372.
Article
PubMed
PubMed Central
Google Scholar
Aydin Z, Marcussen T, Ertekin AS, Oxelman B. Marginal likelihood estimate comparisons to obtain optimal species delimitations in Silene sect. Cryptoneurae (Caryophyllaceae). PLoS One. 2014;9(9):e106990 https://doi.org/10.1371/journal.pone.0106990.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. PNAS. 2010;107(20):9264–9 https://doi.org/10.1073/pnas.0913022107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. The BPP program for species tree estimation and species delimitation. Curr Zool. 2015;61(5):854–65.
Article
Google Scholar
SMHI (2009) Normal uppskattad årsnederbörd, medelvärde 1961–1990. https://www.smhi.se/data/meteorologi/nederbord/normal-uppskattad-arsnederbord-medelvarde-1961-1990-1.6934.
Google Scholar
Klimaservicesenter N (2020) Klimanormaler. https://klimaservicesenter.no/faces/desktop/article.xhtml?uri=klimaservicesenteret/Klimanormaler&chapterId=6214.
Google Scholar
Schmelz RM. Collado R. A guide to European terrestrial and freshwater species of Enchytraeidae (Oligochaeta). Soil Organisms. 2010;82:1–176.
Google Scholar
Turner GF. Parallel speciation, despeciation and respeciation: implications for species definition. Fish Fish. 2002;3(3):225–9 https://doi.org/10.1046/j.1467-2979.2002.00085.x.
Article
Google Scholar
Achurra A, Erséus C. DNA barcoding and species delimitation: the Stylodrilus heringianus case (Annelida : Clitellata : Lumbriculidae). Invertebr Syst. 2013;27(1):118–28 https://doi.org/10.1071/Is12049.
Article
CAS
Google Scholar
Martinsson S, Achurra A, Svensson M, Erséus C. Integrative taxonomy of the freshwater worm Rhyacodrilus falciformis s.l. (Clitellata: Naididae), with the description of a new species. Zool Scr. 2013;42(6):612–22 https://doi.org/10.1111/zsc.12032.
Google Scholar
Martinsson S, Erseus C. Cryptic speciation and limited hybridization within Lumbricus earthworms (Clitellata: Lumbricidae). Mol Phylogenet Evol. 2017;106:18–27 https://doi.org/10.1016/j.ympev.2016.09.011.
Article
PubMed
Google Scholar
Giska I, Sechi P, Babik W. Deeply divergent sympatric mitochondrial lineages of the earthworm Lumbricus rubellus are not reproductively isolated. BMC Evol Biol. 2015;15:217 https://doi.org/10.1186/s12862-015-0488-9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martinsson S, Erséus C. Cryptic diversity in supposedly species-poor genera of Enchytraeidae (Annelida: Clitellata). Zool J Linnean Soc. 2018;183(4):749–62 https://doi.org/10.1093/zoolinnean/zlx084.
Article
Google Scholar
Martin P, Martinsson S, Wuillot J, Erséus C. Integrative species delimitation and phylogeny of the branchiate worm Branchiodrilus (Clitellata, Naididae). Zool Scr. 2018;47(6):727–42 https://doi.org/10.1111/zsc.12316.
Article
Google Scholar
Siddall ME, Trontelj P, Utevsky SY, Nkamany M, Macdonald KS. diverse molecular data demonstrate that commercially available medicinal leeches are not Hirudo medicinalis. Proc R Soc Biol Sci Ser B. 2007;274(1617):1481–7 https://doi.org/10.1098/rspb.2007.0248.
Article
CAS
Google Scholar
Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, Barraclough TG, Vogler AP. Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Philos Trans R Soc B Biol Sci. 2008;363(1506):2987–96 https://doi.org/10.1098/rstb.2008.0066.
Article
Google Scholar
Sjögren M, Augustsson A, Rundgren S. Dispersal and fragmentation of the enchytraeid Cognettia sphagnetorum in metal polluted soil. Pedobiologia. 1995;39(3):207–18.
Google Scholar
Eijsackers H. Earthworms as colonizers of natural and cultivated soil environments. Appl Soil Ecol. 2011;50:1–13 https://doi.org/10.1016/j.apsoil.2011.07.008.
Article
Google Scholar
Lundqvist J. Late Weichselian glaciation and deglaciation in Scandinavia. Quat Sci Rev. 1986;5:269–92 https://doi.org/10.1016/s0277-3791(86)80023-3.
Article
Google Scholar
Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes. PLoS Biol. 2004;2(10):e312 https://doi.org/10.1371/journal.pbio.0020312.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith MA, Fisher BL, Hebert PD. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos Trans R Soc Lond Ser B Biol Sci. 2005;360(1462):1825–34 https://doi.org/10.1098/rstb.2005.1714.
Article
CAS
Google Scholar
Ratnasingham S, Hebert PD. A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS One. 2013;8(7):e66213 https://doi.org/10.1371/journal.pone.0066213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dupuis JR, Roe AD, Sperling FA. Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Mol Ecol. 2012;21(18):4422–36 https://doi.org/10.1111/j.1365-294X.2012.05642.x.
Article
PubMed
Google Scholar
Schmelz RM, Klinth MJ, Chalkia C, Anastasiadou P, Vavoulidou E. Enchytraeus demutatus sp. nov. (Enchytraeidae, Oligochaeta) has characters hitherto unrecorded in the genus. Soil Organisms. 2019;91(3):87–96 https://doi.org/10.25674/so91iss3pp87u.
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata TMAFFT. a novel method for rapid multiple sequence alignment based on fast Fourier trasform. Nucleic Acids Res. 2002;30(14):3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet. 2003;73(5):1162–9 https://doi.org/10.1086/379378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001;68(4):978–89 https://doi.org/10.1086/319501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2 https://doi.org/10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Flot J-F, Tillier A, Samadi S, Tillier S. Phase determination from direct sequencing of length-variable DNA regions. Mol Ecol Notes. 2006;6(3):627–30 https://doi.org/10.1111/j.1471-8286.2006.01355.x.
Article
CAS
Google Scholar
Flot J-F. CHAMPURU 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengtfs. Mol Ecol Notes. 2007;7:974–7 https://doi.org/10.1111/j.1471-8286.2007.01857.x.
Article
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9 https://doi.org/10.1093/molbev/msy096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puillandre N, Lambert A, Brouillet S, Achaz G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol. 2012;21(8):1864–77 https://doi.org/10.1111/j.1365-294X.2011.05239.x.
Article
CAS
PubMed
Google Scholar
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110–6 https://doi.org/10.1111/2041-210X.12410.
Article
Google Scholar
Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48 https://doi.org/10.1093/oxfordjournals.molbev.a026036.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21 https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Lefort V, Longueville J-E, Gascuel O. SMS: smart model selection in PhyML. Mol Biol Evol. 2017;34(9):2422–4 https://doi.org/10.1093/molbev/msx149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol. 2006;55(4):539–52 https://doi.org/10.1080/10635150600755453.
Article
PubMed
Google Scholar
Rambaut A. FigTree; 2014. p. v1.4.2.
Google Scholar
Spöri Y, Flot J-F. HaplowebMaker and CoMa: two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol Evol. 2020; https://doi.org/10.1111/2041-210x.13454.
Yang Z, Rannala B. Unguided species delimitation using DNA sequence data from multiple loci. Mol Biol Evol. 2014;31(12):3125–35 https://doi.org/10.1093/molbev/msu279.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rannala B, Yang Z. Improved reversible jump algorithms for Bayesian species delimitation. Genetics. 2013;194(1):245–53 https://doi.org/10.1534/genetics.112.149039.
Article
PubMed
PubMed Central
Google Scholar