Reeb V, Bhattacharya D. The thermo-acidophilic cyanidiophyceae (Cyanidiales). In: Seckbach J, Chapman D, editors. Red Algae in the Genomic Age: Springer; 2010. p. 409–26. https://doi.org/10.1007/978-90-481-3795-4.
Hough DW, Danson MJ. Extremozymes. Curr Opin Chem Biol. 1999;3(1):39–46.
Article
CAS
PubMed
Google Scholar
Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature. 2001;409(6823):1092.
Article
CAS
PubMed
Google Scholar
Ciniglia C, Yoon HS, Pollio A, Pinto G, Bhattacharya D. Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol. 2004;13(7):1827–38.
Article
CAS
PubMed
Google Scholar
Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D. Defining the major lineages of red algae (Rhodophyta). J Phycol. 2006;42(2):482–92.
Article
CAS
Google Scholar
Seckbach J. Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular studies. J Phycol. 1991;27(6):794–6.
Article
Google Scholar
Ott FD, Seckbach J. New classification for the genus Cyanidium Geitler 1933. In: Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells: Springer; 1994. p. 145–52. https://doi.org/10.1007/978-94-011-0882-9_9.
Pinto G, Albertano P, Ciniglia C, Cozzolino S, Pollio A, Yoon HS, Bhattacharya D. Comparative approaches to the taxonomy of the genus Galdieria Merola (Cyanidiales, Rhodophyta). Cryptogamie Algol. 2003;24(1):13–32.
Google Scholar
Schwabe G. Uber einige Blaualgen aus dem mittleren und sudlichen Chile. Verh Dt Wiss Verein Santiago NF. 1936;3:113–74.
Google Scholar
Yoon HS, Ciniglia C, Wu M, Comeron JM, Pinto G, Pollio A, Bhattacharya D. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol Biol. 2006;6(1):78.
Article
PubMed
PubMed Central
Google Scholar
Iovinella M, Eren A, Pinto G, Pollio A, Davis SJ, Cennamo P, Ciniglia C. Cryptic dispersal in non-acidic environments from Turkey of Cyanidiophytina (Rhodophyta). Extremophiles. 2018.
Ciniglia C, Cennamo P, De Natale A, De Stefano M, Sirakov M, Iovinella M, Yoon HS, Pollio A. Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy. Phycological Res. 2019;67(4):311–9.
Article
CAS
Google Scholar
Yang EC, Boo SM, Bhattacharya D, Saunders GW, Knoll AH, Fredericq S, Graf L, Yoon HS. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci Rep. 2016;6:21361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsieh CJ, Zhan SH, Lin Y, Tang SL, Liu SL. Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales). J Phycol. 2015;51(4):682–94.
Article
PubMed
Google Scholar
Yoon HS, Nelson W, Lindstrom SC, Boo SM, Pueschel C, Qiu H, Bhattacharya D. Rhodophyta. In: Archibald JM, AGB S, Slamovits CH, editors. Handbook of the Protists. Cham: Springer International Publishing; 2017. p. 89–133.
Chapter
Google Scholar
Toplin JA, Norris TB, Lehr CR, McDermott TR, Castenholz RW. Biogeographic and phylogenetic diversity of thermoacidophilic Cyanidiales in Yellowstone National Park, Japan, and New Zealand. Appl Environ Microbiol. 2008;74(9):2822–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skorupa DJ, Reeb V, Castenholz RW, Bhattacharya D, McDermott TR. Cyanidiales diversity in Yellowstone national park. Lett Appl Microbiol. 2013;57(5):459–66.
Article
CAS
PubMed
Google Scholar
Ciniglia C, Yang EC, Pollio A, Pinto G, Iovinella M, Vitale L, Yoon HS. Cyanidiophyceae in Iceland: plastid rbcL gene elucidates origin and dispersal of extremophilic Galdieria sulphuraria and G. maxima (Galdieriaceae, Rhodophyta). Phycologia. 2014;53(6):542–51.
Article
CAS
Google Scholar
Gross W, Küver J, Tischendorf G, Bouchaala N, Büsch W. Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas. Eur J Phycol. 1998;33(1):25–31.
Article
Google Scholar
Gross W. Revision of comparative traits for the acido-and thermophilic red algae Cyanidium and Galdieria. In: Enigmatic Microorganisms and life in Extreme Environments: Springer; 1999. p. 437–46. https://doi.org/10.1007/978-94-011-4838-2_34.
Albertano P, Ciniglia C, Pinto G, Pollio A. The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia. 2000;433(1–3):137–43.
Article
Google Scholar
Gross W, Oesterhelt C, Tischendorf G, Lederer F. Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). Eur J Phycol. 2002;37(3):477–83.
Article
Google Scholar
Ciniglia C, Pinto G, Pollio A. Cyanidium from caves: a reinstatement of Cyanidium chilense Schwabe (Cyanidiophytina, Rhodophyta). Phytotaxa. 2017;295(1):86–8.
Article
Google Scholar
Barcytė D, Nedbalova L, Culka A, Košek F, Jehlička J. Burning coal spoil heaps as a new habitat for the extremophilic red alga Galdieria sulphuraria. Fottea. 2018;18(1):19–29.
Article
Google Scholar
Qiu H, Rossoni AW, Weber APM, Yoon HS, Bhattacharya D. Unexpected conservation of the RNA splicing apparatus in the highly streamlined genome of Galdieria sulphuraria. BMC Evol Biol. 2018;18(1):41.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gross W, Schnarrenberger C. Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol. 1995;36(4):633–8.
CAS
Google Scholar
Qiu H, Price DC, Weber APM, Reeb V, Chan Yang E, Lee JM, Kim SY, Yoon HS, Bhattacharya D. Adaptation through horizontal gene transfer in the cryptoendolithic red alga Galdieria phleagrea. Curr Biol. 2013;23(19):R865–6.
Article
CAS
PubMed
Google Scholar
Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science. 2013;339(6124):1207–10.
Article
PubMed
CAS
Google Scholar
Rossoni A, Price D, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber A. The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife. 2019;8.
Jain K, Krause K, Grewe F, Nelson GF, Weber APM, Christensen AC, Mower JP. Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily? Genome Biol Evol. 2015;7(1):367–80.
Article
CAS
Google Scholar
Ohta N, Sato N, Kuroiwa T. Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res. 1998;26(22):5190–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S-L, Chiang Y-R, Yoon HS, Fu H-Y: Comparative genome analysis reveals Cyanidiococcus gen. nov., a new extremophilic red algal genus sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta). J Phycol 2020, n/a(n/a).
Leblanc C, Richard O, Kloareg B, Viehmann S, Zetsche K, Boyen C. Origin and evolution of mitochondria: what have we learnt from red algae? Curr Genet. 1997;31(3):193–207.
Article
CAS
PubMed
Google Scholar
Darling AE, Mau B, Perna NT. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5(6):e11147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hilker R, Sickinger C, Pedersen CN, Stoye J. UniMoG—a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics. 2012;28(19):2509–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merola A, Castaldo R, Luca PD, Gambardella R, Musacchio A, Taddei R. Revision of Cyanidium caldarium. Three species of acidophilic algae. Plant Biosyst. 1981;115(4–5):189–95.
Google Scholar
Sentsova UJ. On the diversity of acido-thermophilic unicellular algae of the genus Galdieria (Rhodophyta, Cyanidiophyceae). Botaničeskij Žurnal. 1991;76(1):69–78.
Google Scholar
Suzuki K, Kawano S, Kuroiwa T. Single mitochondrion in acidic hot-spring alga: behaviour of mitochondria in Cyanidium caldarium and Galdieria sulphuraria (Rhodophyta, Cyanidiophyceae). Phycologia. 1994;33(4):298–300.
Article
Google Scholar
Matsuzaki M, Misumi O, Shin-i T, Maruyama S, Takahara M, Miyagishima S-Y, Mori T, Nishida K, Yagisawa F, Nishida K, et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653.
Article
CAS
PubMed
Google Scholar
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004;5(2):123.
Article
CAS
PubMed
Google Scholar
Adams KL, Daley DO, Whelan J, Palmer JD. Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell. 2002;14(4):931–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res. 2007;35(14):4686–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S. On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol. 2011;162(1):53–70.
Article
CAS
PubMed
Google Scholar
Elleuche S, Schröder C, Sahm K, Antranikian G. Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol. 2014;29:116–23.
Article
CAS
PubMed
Google Scholar
Jaenicke R. Stability and stabilization of globular proteins in solution. J Biotechnol. 2000;79(3):193–203.
Article
CAS
PubMed
Google Scholar
Das R, Gerstein M. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct Integr Genomics. 2000;1(1):76–88.
Article
CAS
PubMed
Google Scholar
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.
Article
CAS
PubMed
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The Proteomics Protocols Handbook: Springer; 2005. p. 571–607. https://doi.org/10.1385/1-59259-890-0:571.
DePristo MA, Weinreich DM, Hartl DL. Missense meanderings in sequence space: a biophysical view of protein evolution. Nat Rev Genet. 2005;6(9):678–87.
Article
CAS
PubMed
Google Scholar
Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;88(6):1895–8.
CAS
PubMed
Google Scholar
Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng Des Sel. 1990;4(2):155–61.
Article
CAS
Google Scholar
Hong H, Joh NH, Bowie JU, Tamm LK. Methods for measuring the thermodynamic stability of membrane proteins. In: Johnson ML, Holt JM, Ackers GK, editors. Methods in Enzymology, vol. 455: Academic Press; 2009. p. 213–36. https://doi.org/10.1016/S0076-6879(08)04208-0.
Tamm LK, Hong H, Liang B. Folding and assembly of β-barrel membrane proteins. Biochim Biophys Acta Biomembr. 2004;1666(1–2):250–63.
Article
CAS
Google Scholar
Grigoriev A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 1998;26(10):2286–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Necşulea A, Lobry JR. A new method for assessing the effect of replication on DNA base composition asymmetry. Mol Biol Evol. 2007;24(10):2169–79.
Article
PubMed
CAS
Google Scholar
Yasukawa T, Yang M-Y, Jacobs HT, Holt IJ. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell. 2005;18(6):651–62.
Article
CAS
PubMed
Google Scholar
Yasukawa T, Reyes A, Cluett TJ, Yang M-Y, Bowmaker M, Jacobs HT, Holt IJ. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006;25(22):5358–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pohjoismäki JLO, Holmes JB, Wood SR, Yang M-Y, Yasukawa T, Reyes A, Bailey LJ, Cluett TJ, Goffart S, Willcox S, et al. Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J Mol Biol. 2010;397(5):1144–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pohjoismäki JL, Goffart S. Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. Bioessays. 2011;33(4):290–9.
Article
PubMed
CAS
Google Scholar
Holt IJ, Reyes A. Human mitochondrial DNA replication. Cold Spring Harb Perspect Biol. 2012;4(12):a012971.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, McElhinny SAN, Kunkel TA. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet. 2012;8(10):e1003016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes A, Kazak L, Wood SR, Yasukawa T, Jacobs HT, Holt IJ. Mitochondrial DNA replication proceeds via a 'bootlace' mechanism involving the incorporation of processed transcripts. Nucleic Acids Res. 2013;41(11):5837–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miralles Fusté J, Shi Y, Wanrooij S, Zhu X, Jemt E, Persson Ö, Sabouri N, Gustafsson CM, Falkenberg M. In vivo occupancy of mitochondrial single-stranded DNA binding protein supports the strand displacement mode of DNA replication. PLoS Genet. 2014;10(12):e1004832.
Article
PubMed
PubMed Central
Google Scholar
Yasukawa T, Kang D. An overview of mammalian mitochondrial DNA replication mechanisms. J Biochem. 2018;164(3):183–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herbers E, Kekäläinen NJ, Hangas A, Pohjoismäki JL, Goffart S. Tissue specific differences in mitochondrial DNA maintenance and expression. Mitochondrion. 2019;44:85–92.
Article
CAS
PubMed
Google Scholar
Fonseca MM, Harris DJ, Posada D. The inversion of the control region in three mitogenomes provides further evidence for an asymmetric model of vertebrate mtDNA replication. PLoS One. 2014;9(9):e106654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fijalkowska IJ, Jonczyk P, Tkaczyk MM, Bialoskorska M, Schaaper RM. Unequal fidelity of leading strand and lagging strand DNA replication on the Escherichia coli chromosome. Proc Natl Acad Sci U S A. 1998;95(17):10020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bielawski JP, Gold JR. Mutation patterns of mitochondrial H- and L-strand DNA in closely related cyprinid fishes. Genetics. 2002;161(4):1589–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlov YI, Mian IM, Kunkel TA. Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol. 2003;13(9):744–8.
Article
CAS
PubMed
Google Scholar
Kunkel TA, Burgers PM. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008;18(11):521–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kono N, Tomita M, Arakawa K. Accelerated laboratory evolution reveals the influence of replication on the GC skew in Escherichia coli. Genome Biol Evol. 2018;10(11):3110–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes A, Gissi C, Pesole G, Saccone C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol. 1998;15(8):957–66.
Article
CAS
PubMed
Google Scholar
Lin Q, Cui P, Ding F, Hu S, Yu J. Replication-associated mutational pressure (RMP) governs strand-biased compositional asymmetry (SCA) and gene organization in animal mitochondrial genomes. Curr Genomics. 2012;13(1):28–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szczepanik D, Mackiewicz P, Kowalczuk M, Gierlik A, Nowicka A, Dudek MR, Cebrat S. Evolution rates of genes on leading and lagging DNA strands. J Mol Evol. 2001;52(5):426–33.
Article
CAS
PubMed
Google Scholar
Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311(5768):1727.
Article
CAS
PubMed
Google Scholar
Bergstrom CT, Pritchard J. Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. Genetics. 1998;149(4):2135–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson N-G. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 2008;6(1):e10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoon HS, Hackett JD, Bhattacharya D. A single origin of the peridinin-and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A. 2002;99(18):11724–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cho CH, Choi JW, Lam DW, Kim KM, Yoon HS. Plastid genome analysis of three Nemaliophycidae red algal species suggests environmental adaptation for iron limited habitats. PLoS One. 2018;13(5):e0196995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Harris RS. Improved pairwise alignmnet of genomic DNA. Dissertation: Pennsylvania State University; 2007.
Google Scholar
Boyen C, Leblanc C, Bonnard G, Grienenberger JM, Kloareg B. Nucleotide sequence of the cox3 gene from Chondrus crispus: evidence that UGA encodes tryptophan and evolutionary implications. Nucleic Acids Res. 1994;22(8):1400–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44(W1):W54–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salomaki ED, Lane CE. Red algal mitochondrial genomes are more complete than previously reported. Genome Biol Evol. 2017;9(1):48–63.
CAS
PubMed
Google Scholar
Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44(4):1746–59.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32(1):268–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, et al. A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol. 2007;5(1):28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026.
Article
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, Von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953.
Article
CAS
PubMed
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cummins CA, McInerney JO. A method for inferring the rate of evolution of homologous characters that can potentially improve phylogenetic inference, resolve deep divergence and correct systematic biases. Syst Biol. 2011;60(6):833–44.
Article
PubMed
Google Scholar
Kryazhimskiy S, Plotkin JB. The population genetics of dN/dS. PLoS Genet. 2008;4(12):e1000304.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Xiao J, Wu J, Zhang H, Liu G, Wang X, Dai L. ParaAT: a parallel tool for constructing multiple protein-coding DNA alignments. Biochem Biophys Res Commun. 2012;419(4):779–81.
Article
CAS
PubMed
Google Scholar
Zhang Z, Li J, Zhao X-Q, Wang J, Wong GK-S, Yu J. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteomics Bioinform. 2006;4(4):259–63.
Article
CAS
Google Scholar