Swanson WJ, Vacquier VD. The rapid evolution of reproductive proteins. Nat Rev Genet. 2002;3:137–44.
Article
CAS
PubMed
Google Scholar
Turner LM, Hoekstra HE. Causes and consequences of the evolution of reproductive proteins. Int J Dev Biol. 2008;52:769–80.
Article
CAS
PubMed
Google Scholar
Dorus S, Karr TL. Sperm proteomics and genomics. In: Birkhead TR, Hosken DJ, Pitnick S, editors. Sperm biology: an evolutionary perspective. Amsterdam: Elsevier; 2009. p. 435–69.
Findlay GD, Swanson WJ. Proteomics enhances evolutionary and functional analysis of reproductive proteins. BioEssays. 2010;32:26–36.
Article
CAS
PubMed
Google Scholar
Vicens A, Lüke L, Roldan ER. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa. PLoS One. 2014;9:e91302.
Article
PubMed
PubMed Central
CAS
Google Scholar
Birkhead TR, Pizzari T. Postcopulatory sexual selection. Nat Rev Genet. 2002;3:262.
Article
CAS
PubMed
Google Scholar
Dorus S, Evans PD, Wyckoff GJ, Choi SS, Lahn BT. Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity. Nat Genet. 2004;36:1326–9.
Article
CAS
PubMed
Google Scholar
Herlyn H, Zischler H. Sequence evolution of the sperm ligand zonadhesin correlates negatively with body weight dimorphism in primates. Evolution. 2007;61:289–98.
Article
CAS
PubMed
Google Scholar
Ramm SA, Oliver PL, Ponting CP, Stockley P, Emes RD. Sexual selection and the adaptive evolution of mammalian ejaculate proteins. Mol Biol Evol. 2008;25:207.
Article
CAS
PubMed
Google Scholar
Finn S, Civetta A. Sexual selection and the molecular evolution of ADAM proteins. J Mol Evol. 2010;71:231–40.
Article
CAS
PubMed
Google Scholar
Prothmann A, Laube I, Dietz J, Roos C, Mengel K, Zischler H, Herlyn H. Sexual size dimorphism predicts rates of sequence evolution of SPerm adhesion molecule 1 (SPAM1, also PH-20) in monkeys, but not in hominoid apes including humans. Mol Phylogenet Evol. 2012;63:52–63.
Article
PubMed
Google Scholar
Walters JR, Harrison RG. Decoupling of rapid and adaptive evolution among seminal fluid proteins in Heliconius butterflies with divergent mating systems. Evolution. 2011;65:2855–71.
Article
CAS
PubMed
Google Scholar
Lüke L, Vicens A, Serra F, Luque-Larena JJ, Dopazo H, Roldan ERS, Gomendio M. Sexual selection halts the relaxation of protamine 2 among rodents. PLoS One. 2011;6:e29247.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lüke L, Tourmente M, Roldan ERS. Sexual selection on protamine 1 in mammals. Mol Biol Evol. 2016a;3:174–84.
Article
CAS
Google Scholar
Lüke L, Tourmente M, Dopazo H, Serra F, Roldan ERS. Selective constraints on protamine 2 in primates and rodents. BMC Evol Biol. 2016b;16:21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dorus S, Wasbrough ER, Busby J, Wilkin EC, Karr TL. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes. Mol Biol Evol. 2010;27:1235–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gibbs GM, Roelants K, O'Brian MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins-roles in reproduction, cancer, and immune defense. Endocr Rev. 2008;29:865–97.
Article
CAS
PubMed
Google Scholar
Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44:227–31.
Article
CAS
PubMed
Google Scholar
Maeda T, Nishida J, Nakanishi Y. Expression pattern, subcellular localization and structure-function relationship of rat Tpx-1, a spermatogenic cell adhesion molecule responsible for association with Sertoli cells. Develop Growth Differ. 1999;41:715–22.
Article
CAS
Google Scholar
Ellerman DA, Cohen DJ, Da Ros VG, Morgenfeld MM, Busso D, Cuasnicú PS. Sperm protein "DE" mediates gamete fusion through an evolutionarily conserved site of the CRISP family. Dev Biol. 2006;297:228–37.
Article
CAS
PubMed
Google Scholar
Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, O'Bryan MK. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem. 2006;281:4156–63.
Article
CAS
PubMed
Google Scholar
Abraham A, Chandler DE. Tracing the evolutionary history of the CAP superfamily of proteins using amino acid sequence homology and conservation of splice sites. J Mol Evol. 2017;85:137–57.
Article
CAS
PubMed
Google Scholar
Cameo MS, Blaquier JA. Androgen-controlled specific proteins in rat epididymis. J Endocrinol. 1976;69:47–55.
Article
CAS
PubMed
Google Scholar
Kasahara M, Figueroa F, Klein J. Random cloning of genes from mouse chromosome 17. Proc Natl Acad Sci U S A. 1987;84:3325–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haendler B, Kratzschmar J, Theuring F, Schleuning WD. Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland. Endocrinology. 1993;133:192–8.
Article
CAS
PubMed
Google Scholar
Jalkanen J, Huhtaniemi I, Poutanen M. Mouse cysteine-rich secretory protein 4 (CRISP4): a member of the CRISP family exclusively expressed in the epididymis in an androgen-dependent manner. Biol Reprod. 2005;72:1268–74.
Article
CAS
PubMed
Google Scholar
Cohen DJ, Ellerman DA, Cuasnicú PS. Mammalian sperm-egg fusion: evidence that epididymal protein DE plays a role in mouse gamete fusion. Biol Reprod. 2000;1:462–8.
Article
Google Scholar
Busso D, Cohen DJ, Hayashi M, Kasahara M, Cuasnicu PS. Human testicular protein TPX1/CRISP-2: localization in spermatozoa, fate after capacitation and relevance for gamete interaction. Mol Hum Reprod. 2005;11:299–305.
Article
CAS
PubMed
Google Scholar
Busso D, Cohen DJ, Maldera JA, Dematteis A, Cuasnicu PS. A novel function for CRISP1 in rodent fertilization: involvement in sperm—zona pellucida interaction. Biol Reprod. 2007;77:848–54.
Article
CAS
PubMed
Google Scholar
Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Rubinstein M, Eddy EM, Cuasnicu PS. Impaired sperm fertilizing ability in mice lacking cysteine-RIch secretory protein 1 (CRISP1). Dev Biol. 2008;1:12–8.
Article
CAS
Google Scholar
Brukman NG, Miyata H, Torres P, Lombardo D, Caramelo JJ, Ikawa M, Da Ros VG, Cuasnicú PS. Fertilization defects in sperm from cysteine-rich secretory protein 2 (Crisp2) knockout mice: implications for fertility disorders. Mol Hum Reprod. 2016;22:240–51.
Article
CAS
PubMed
Google Scholar
Gibbs GM, Orta G, Reddy T, Koppers AJ, Martinez-Lopez P, de la Vega-Beltran JL, Lo JC, Veldhuis N, Jamsai D, McIntyre P, et al. 2011. Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci U S A. 2011;108:7034–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turunen HT, Sipila P, Krutskikh A, Toivanen J, Mankonen H, Hamalainen V, Bjorkgren I, Huhtaniemi I, Poutanen M. 2012. Loss of cysteine-rich secretory protein 4 (Crisp4) leads to deficiency in sperm-zona pellucid interaction in mice. Biol Reprod. 2012;86:1–8.
Article
PubMed
CAS
Google Scholar
Carvajal G, Brukman NG, Weigel Muñoz M, Battistone MA, Guazzone VA, Ikawa M. Haruhiko Miyata, Lustig L, Breton S, Cuasnicu PS. Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep. 2018;8:17531.
Da Ros VG, Muñoz MW, Battistone MA, Brukman NG, Carvajal G, Curci L, Gómez-ElIas MD, Cohen DB, Cuasnicu PS. From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization. Asian J Androl. 2015;17:711–5.
PubMed
PubMed Central
Google Scholar
Rochwerger L, Cohen DJ, Cuasnicu PS. Mammalian sperm-egg fusion: the rat egg has complementary sites for a sperm protein that mediates gamete fusion. Dev Biol. 1992;153:83–90.
Article
CAS
PubMed
Google Scholar
Maldera JA, Weigel Muñoz M, Chirinos M, Busso D, Ge Raffo F, Battistone MA, Blaquier JA, Larrea F, Cuasnicu PS. Human fertilization: epididymal hCRISP1 mediates sperm–zona pellucida binding through its interaction with ZP3. Mol Hum Reprod. 2013;12:341–9.
Google Scholar
Ernesto JI, Muñoz MW, Battistone MA, Vasen G, Martínez-López P, Orta G, Figueiras-Fierro D, De la Vega-Beltran JL, Moreno IA, Guidobaldi HA, Giojalas L, Darszon A, Cohen DJ, Cuasnicú PS. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization. J Cell Biol. 2015;210:1213–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413:603–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, Garbers DL, Babcock DF. CatSper1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci U S A. 2003;100:14864–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunagar K, Johnson WE, O'Brien SJ, Vasconcelos V, Antunes A. Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol. 2012;29:1807–22.
Article
CAS
PubMed
Google Scholar
Claw KG, George RD, Swanson WJ. Detecting coevolution in mammalian sperm–egg fusion proteins. Mol Reprod Dev. 2014;1:531–8.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Evol. 1990;215:403–10.
CAS
Google Scholar
Vadnais ML, Foster DN, Roberts KP. Molecular cloning and expression of the CRISP family of proteins in the boar. Biol Reprod. 2008;79:1129–34.
Article
CAS
PubMed
Google Scholar
Nolan MA, Wu L, Bang HJ, Jelinsky SA, Roberts KP, Turner TT, Kopf GS, Johnston DS. Identification of rat cysteine-rich secretory protein 4 (Crisp4) as the ortholog to human CRISP1 and mouse Crisp4. Biol Reprod. 2006;1:984–91.
Article
CAS
Google Scholar
Yalcin B, Adams DJ, Flint J, Keane TM. Next-generation sequencing of experimental mouse strains. Mamm Genome. 2012;23:490–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lartillot N, Poujol R. A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol Biol Evol. 2011;28:729–44.
Article
CAS
PubMed
Google Scholar
Reddy T, Gibbs GM, Merriner DJ, Kerr JB, O'Bryan MK. Cysteine-rich secretory proteins are not exclusively expressed in the male reproductive tract. Dev Dyn. 2008;1:3313–23.
Article
CAS
Google Scholar
Evans J, D'Sylva R, Volpert M, Jamsai D, Merriner DJ, Nie G, Salamonsen LA, O'Bryan MK. Endometrial CRISP3 is regulated throughout the mouse estrous and human menstrual cycle and facilitates adhesion and proliferation of endometrial epithelial cells. Biol Reprod. 2015;92:99.
Article
PubMed
CAS
Google Scholar
Herlyn H, Zischler H. Tandem repetitive D domains of the sperm ligand zonadhesin evolve faster in the paralogue than in the orthologue comparison. J Mol Evol. 2006;63:602–11.
Article
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A. 2005;102:10557–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.
Article
CAS
PubMed
Google Scholar
Löytynoja A, Goldman N. webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics. 2010;11:579.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994;11:725–36.
CAS
PubMed
Google Scholar
Yang Z, Rannala B. Bayesian phylogenetic inference using DNA sequences, Markov chain Monte Carlo methods. Mol Biol Evol. 1997;14:717–24.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4, phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998;15:568–73.
Article
CAS
PubMed
Google Scholar
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22:2472–9.
Article
CAS
PubMed
Google Scholar
Yang Z, Swanson WJ. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol. 2002;19:49.
Article
PubMed
Google Scholar
Massingham T, Goldman N. Detecting amino acid sites under positive selection and purifying selection. Genetics. 2005;169:1753.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomendio M, Harcourt H, Roldan ERS. Sperm competition in mammals. In: Birkhead TR, Møller AP, editors. Sperm competition and sexual selection. London: Academic Press; 1998. p. 667–751.
Chapter
Google Scholar
Hosken DJ, Ward PI. Experimental evidence for testis size evolution via sperm competition. Ecol Lett. 2001;22:10–3.
Article
Google Scholar
Soulsbury CD, Dornhaus A. Genetic patterns of paternity and testes size in mammals. PLoS One. 2010;5:103–8.
Article
CAS
Google Scholar