Oswald JD. LDL Neuropterida species of the world (version July 2018). Species 2000 & ITIS catalogue of life, 26th February 2019 2019. www.catalogueoflife.org/col. Accessed 12 Mar 2019.
Google Scholar
Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, Ziesmann T, et al. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data. BMC Evol Biol. 2014;14:52.
PubMed
PubMed Central
Google Scholar
Wiegmann BM, Trautwein MD, Kim J-W, Cassel BK, Bertone MA, Winterton SL, et al. Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol. 2009;7:34.
PubMed
PubMed Central
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
CAS
PubMed
Google Scholar
Aspöck U. Phylogeny of the Neuropterida (Insecta: Holometabola). Zool Scr. 2002;31:51–5.
Google Scholar
Aspöck H, Aspöck U, Hölzel H. Die Neuropteren Europas. Eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Krefeld: Goecke & Evers; 1980.
Google Scholar
Randolf S, Zimmermann D, Aspöck U. Head anatomy of adult Coniopteryx pygmaea: effects of miniaturization and the systematic position of Coniopterygidae (Insecta: Neuroptera). Arthropod Struct Dev. 2017;46:304–22.
PubMed
Google Scholar
Randolf S, Zimmermann D, Aspöck U. Head anatomy of adult Nevrorthus apatelios and basal splitting events in Neuroptera (Neuroptera: Nevrorthidae). Arthropod Syst Phylogeny. 2014;72:111–36.
Google Scholar
Aspöck U, Plant JD, Nemeschkal HL. Cladistic analysis of Neuroptera and their systematic position within Neuropterida (Insecta: Holometabola: Neuropterida: Neuroptera). Syst Entomol. 2001;26:73–86.
Google Scholar
Randolf S, Zimmermann D, Aspöck U. Head anatomy of adult Sisyra terminalis (Insecta: Neuroptera: Sisyridae) - functional adaptations and phylogenetic implications. Arthropod Struct Dev. 2013;42:565–82.
PubMed
Google Scholar
Aspöck U, Aspöck H. Phylogenetic relevance of the genital sclerites of Neuropterida (Insecta: Holometabola). Syst Entomol. 2008;33:97–127.
Google Scholar
Beutel RG, Zimmermann D, Krauß M, Randolf S, Wipfler B. Head morphology of Osmylus fulvicephalus (Osmylidae, Neuroptera) and its phylogenetic implications. Org Divers Evol. 2010;10:311–29.
Google Scholar
MacLeod EG. Comparative morphological studies on the head capsule and cervix of the larval Neuroptera (Insecta). Cambridge: Harvard University; 1964.
Google Scholar
Badano D, Aspöck U, Aspöck H, Cerretti P. Phylogeny of Myrmeleontiformia based on larval morphology (Neuropterida: Neuroptera). Syst Entomol. 2017;42:94–117.
Google Scholar
Beutel RG, Friedrich F, Aspöck U. The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zool J Linnean Soc. 2010;158:533–62.
Google Scholar
Yang Q, Makarkin VN, Winterton SL, Khramov AV, Ren D. A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and its phylogenetic position in Neuropterida. PLoS One. 2012;7:e44762.
CAS
PubMed
PubMed Central
Google Scholar
Winterton SL, Hardy NB, Wiegmann BM. On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Syst Entomol. 2010;35:349–78.
Google Scholar
Zhao J, Li H, Winterton SL, Liu Z. Ancestral gene organization in the mitochondrial genome of Thyridosmylus langii (McLachlan, 1870) (Neuroptera: Osmylidae) and implications for lacewing evolution. PLoS One. 2013;8:1–12.
Google Scholar
Cameron SL, Sullivan J, Song H, Miller KB, Whiting MF. A mitochondrial genome phylogeny of the Neuropterida (lace-wings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool Scr. 2009;38:575–90.
Google Scholar
Winterton SL, Lemmon AR, Gillung JP, Garzon IJ, Badano D, Bakkes DK, et al. Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Syst Entomol. 2018;43:330–54.
Google Scholar
Wang Y, Liu X, Garzón-Orduña IJ, Winterton SL, Yan Y, Aspöck U, et al. Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics. 2017;33:617–36.
PubMed
Google Scholar
Song N, Li X, Zhai Q, Bozdoğan H, Yin X-M. The mitochondrial genomes of neuropteridan insects and implications for the phylogeny of Neuroptera. Genes. 2019;10:108.
CAS
PubMed Central
Google Scholar
Wang Y, Zhou X, Wang L, Liu X, Yang D, Rokas A. Gene selection and evolutionary modeling affect phylogenomic inference of Neuropterida based on transcriptome data. Int J Mol Sci. 2019;20:1072.
CAS
PubMed Central
Google Scholar
Machado RJP, Gillung JP, Winterton SL, Garzón-Orduña IJ, Lemmon AR, Lemmon EM, et al. Owlflies are derived antlions: anchored phylogenomics supports a new phylogeny and classification of Myrmeleontidae (Neuroptera). Syst Entomol. 2019;44:418–50.
Google Scholar
Haring E, Aspöck U. Phylogeny of the Neuropterida: a first molecular approach. Syst Entomol. 2004;29:415–30.
Google Scholar
Haring E, Aspöck H, Bartel D, Aspöck U. Molecular phylogeny of the Raphidiidae (Raphidioptera). Syst Entomol. 2011;36:16–30.
Google Scholar
Zhao C, Liu X, Yang D. Wing base structural data support the sister relationship of Megaloptera and Neuroptera (Insecta: Neuropterida). PLoS One. 2014;9:e114695.
PubMed
PubMed Central
Google Scholar
Aspöck H. The biology of Raphidioptera: a review of present knowledge. Acta Zool Acad Sci Hung. 2002;48(Suppl. 2):35–50.
Google Scholar
Aspöck U, Aspöck H. Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia. 2007;20:451–516.
Google Scholar
Aspöck H. Der endkreidezeitliche Impakt und das Überleben der Raphidiopteren. In: Int. Entomol. Tag. 1999, entomologica Basiliensia; 2000. p. 223–33.
Google Scholar
Aspöck H. Distribution and biogeography of the order Raphidioptera: updated facts and a new hypothesis. Acta Zool Fenn. 1998;209:33–44.
Google Scholar
Rivera-Gasperín S, Ardila-Camacho A, Contreras-Ramos A. Bionomics and ecological services of Megaloptera larvae (dobsonflies, fishflies, alderflies). Insects. 2019;10:86.
PubMed Central
Google Scholar
Beutel RG, Friedrich F, Hörnschemeyer T, Pohl H, Hünefeld F, Beckmann F, et al. Morphological and molecular evidence converge upon a robust phylogeny of the megadiverse Holometabola. Cladistics. 2011;27:341–55.
PubMed
Google Scholar
Achtelig M. Über die Anatomie des Kopfes von Raphidia flavipes Stein und die Verwandtschaftsbeziehungen der Raphidiidae zu den Megaloptera. Zool J Abt Anat Ontog Tiere. 1967;84:249–312.
Google Scholar
Contreras-Ramos A. Is the family Corydalidae (Neuropterida, Megaloptera) a monophylum? Denisia. 2004;13:135–40.
Google Scholar
Liu X, Lü Y, Aspöck H, Yang D, Aspöck U. Homology of the genital sclerites of Megaloptera (Insecta: Neuropterida) and their phylogenetic relevance. Syst Entomol. 2016;41:256–86.
Google Scholar
Aspöck U, Aspöck H, Liu X. The Nevrorthidae, mistaken at all times: phylogeny and review of present knowledge (Holometabola, Neuropterida, Neuroptera). Dtsch Entomol Zeitschrift. 2017;64:77–110.
Google Scholar
Brushwein JR. Bionomics of Lomamyia hamata (Neuroptera: Berothidae). Ann Entomol Soc Am. 1987;80:671–9.
Google Scholar
Tauber CA, Tauber MJ. Lomamyia latipennis (Neuroptera, Berothidae) life history and larval descriptions. Can Entomol. 1968;100:623–9.
Google Scholar
Komatsu T. Larvae of the Japanese termitophilous predator Isoscelipteron okamotonis (Neuroptera, Berothidae) use their mandibles and silk web to prey on termites. Insect Soc. 2014;61:203–5.
Google Scholar
Dejean A, Canard M. Reproductive behaviour of Trichoscelia santreni (Navas) (Neuroptera: Mantispidae) and parasitization of the colonies of Polybia diguetana R. Du Buysson (Hymenoptera: Vespidae). Neuroptera Int. 1990;6:19–26.
Google Scholar
Schremmer F. Beitrag zur Entwicklungsgeschichte und zum Kokonbau von Mantispa styriaca. Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomol. 1983;35:21–6.
Google Scholar
Redborg KE. Biology of the Mantispidae. Annu Rev Entomol. 1998;43:175–94.
CAS
PubMed
Google Scholar
Engel MS, Winterton SL, Breitkreuz LCV. Phylogeny and evolution of Neuropterida: where have wings of lace taken us? Annu Rev Entomol. 2018;63:531–51.
CAS
PubMed
Google Scholar
Liu X, Winterton SL, Wu C, Piper R, Ohl M. A new genus of mantidflies discovered in the oriental region, with a higher-level phylogeny of Mantispidae (Neuroptera) using DNA sequences and morphology. Syst Entomol. 2015;40:183–206.
CAS
Google Scholar
Faulkner DK. Current knowledge of the biology of the moth-lacewing Oliarces clara banks (Insecta: Neuroptera: Ithonidae). In: Mansell MW, Aspöck H, editors. Advances in neuropterology, Third International Symposium, Kruger National Park, South Africa. 3–4 February 1988. Pretoria: Department of Agricultural Development; 1990. p. 197–203.
Google Scholar
Jandausch K, Pohl H, Aspöck U, Winterton SL, Beutel RG. Morphology of the primary larva of Mantispa aphavexelte Aspöck & Aspöck, 1994 (Neuroptera: Mantispidae) and phylogenetic implications to the order of Neuroptera. Arthropod Syst Phylogeny. 2018;76:529–60.
Google Scholar
Badano D, Engel MS, Basso A, Wang B, Cerretti P. Diverse cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nat Commun. 2018;9:1–14.
CAS
Google Scholar
Aspöck U, Haring E, Aspöck H. The phylogeny of the Neuropterida: long lasting and current controversies and challenges (Insecta: Endopterygota). Arthropod Syst Phylogeny. 2012;70:119–29.
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.
PubMed
Google Scholar
Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol. 1996;43:304–11.
CAS
PubMed
Google Scholar
Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, et al. Phylogenomics and the evolution of hemipteroid insects. Proc Natl Acad Sci. 2018;115:12775–80.
CAS
PubMed
PubMed Central
Google Scholar
Salichos L, Rokas A. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature. 2013;497:327–31.
CAS
PubMed
Google Scholar
Simmons MP, Norton AP. Divergent maximum-likelihood-branch-support values for polytomies. Mol Phylogenet Evol. 2014;73:87–96.
PubMed
Google Scholar
Wägele JW, Letsch H, Klussmann-Kolb A, Mayer C, Misof B, Wägele H. Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny). Front Zool. 2009;6:12.
PubMed
PubMed Central
Google Scholar
Simmons MP, Pickett KM, Miya M. How meaningful are Bayesian support values? Mol Biol Evol. 2004;21:188–99.
CAS
PubMed
Google Scholar
Evangelista D, Thouzé F, Kohli MK, Lopez P, Legendre F. Topological support and data quality can only be assessed through multiple tests in reviewing Blattodea phylogeny. Mol Phylogenet Evol. 2018;128:112–22.
PubMed
Google Scholar
Seo TK. Calculating bootstrap probabilities of phylogeny using multilocus sequence data. Mol Biol Evol. 2008;25:960–71.
CAS
PubMed
Google Scholar
Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV. Whole-genome analyses resolve the phylogeny of flightless birds (Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol. 2019;68:937–55.
PubMed
PubMed Central
Google Scholar
Simmons MP. Misleading results of likelihood-based phylogenetic analyses in the presence of missing data. Cladistics. 2012;28:208–22.
PubMed
Google Scholar
Dell’Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B, Borner J, et al. Decisive data sets in phylogenomics: lessons from studies on the phylogenetic relationships of primarily wingless insects. Mol Biol Evol. 2014;31:239–49.
PubMed
Google Scholar
Gadagkar SR, Rosenberg MS, Kumar S. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool Part B Mol Dev Evol. 2005;304B:64–74.
CAS
Google Scholar
Lemmon AR, Moriarty EC. The importance of proper model assumption in Bayesian phylogenetics. Syst Biol. 2004;53:265–77.
PubMed
Google Scholar
Huelsenbeck JP, Rannala B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol. 2004;53:904–13.
PubMed
Google Scholar
Zhou X, Lutteropp S, Czech L, Stamatakis A, von Looz M, Rokas A. Quartet-based computations of internode certainty provide robust measures of phylogenetic incongruence. Syst Biol. 2019;69:308–24.
Google Scholar
Sayyari E, Mirarab S. Fast coalescent-based computation of local branch support from quartet frequencies. Mol Biol Evol. 2016;33:1654–68.
CAS
PubMed
PubMed Central
Google Scholar
Kück P, Wilkinson M, Groß C, Foster PG, Wägele JW. Can quartet analyses combining maximum likelihood estimation and Hennigian logic overcome long branch attraction in phylogenomic sequence data? PLoS One. 2017;12:e0183393.
PubMed
PubMed Central
Google Scholar
Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA. Quartet sampling distinguishes lack of support from conflicting support in the green plant tree of life. Am J Bot. 2018;105:385–403.
PubMed
Google Scholar
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. Statistics and truth in phylogenomics. Mol Biol Evol. 2012;29:457–72.
CAS
PubMed
Google Scholar
Smith SA, Moore MJ, Brown JW, Yang Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol Biol. 2015;15:150.
PubMed
PubMed Central
Google Scholar
Phillips MJ, Delsuc F, Penny D. Genome-scale phylogeny and the detection of systematic biases. Mol Biol Evol. 2004;21:1455–8.
CAS
PubMed
Google Scholar
Rodríguez-Ezpeleta N, Brinkmann H, Roure B, Lartillot N, Lang BF, Philippe H. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 2007;56:389–99.
PubMed
Google Scholar
Salichos L, Stamatakis A, Rokas A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol Biol Evol. 2014;31:1261–71.
CAS
PubMed
Google Scholar
Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007;56:17–24.
CAS
PubMed
Google Scholar
Song S, Liu L, Edwards SV, Wu S. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci. 2012;109:14942–7.
CAS
PubMed
PubMed Central
Google Scholar
Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol Phylogenet Evol. 2016;94:447–62.
PubMed
Google Scholar
Jeffroy O, Brinkmann H, Delsuc F, Philippe H. Phylogenomics: the beginning of incongruence? Trends Genet. 2006;22:225–31.
CAS
PubMed
Google Scholar
Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, et al. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst Biol. 2017;66:857–79.
CAS
PubMed
Google Scholar
Gillung JP, Winterton SL, Bayless KM, Khouri Z, Borowiec ML, Yeates D, et al. Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Mol Phylogenet Evol. 2018;128:233–45.
CAS
PubMed
Google Scholar
Vasilikopoulos A, Balke M, Beutel RG, Donath A, Podsiadlowski L, Pflug JM, et al. Phylogenomics of the superfamily Dytiscoidea (Coleoptera: Adephaga) with an evaluation of phylogenetic conflict and systematic error. Mol Phylogenet Evol. 2019;135:270–85.
PubMed
Google Scholar
Tong KJ, Duchêne S, Ho SYW, Lo N. Comment on “phylogenomics resolves the timing and pattern of insect evolution”. Science. 2015;349:487.
CAS
PubMed
Google Scholar
Kjer KM, Carle FL, Litman J, Ware J. A molecular phylogeny of Hexapoda. Arthropod Syst Phylogeny. 2006;64:35–44.
Google Scholar
Boudreaux HB. Arthropod phylogeny with special reference to insects. New York: Wiley; 1979.
Google Scholar
Aspöck U. Neue Hypothesen zum System der Neuropterida. Mitteilungen der Dtsch Gesellschaft fur Allg und Angew Entomol. 1995;10:633–6.
Google Scholar
Kristensen NP. Phylogeny of extant hexapods. In: Naumann ID, Carne PB, Lawrence JF, Nielsen ES, Spradberry JP, Taylor RW, et al., editors. The insects of Australia: a textbook for students and research workers. 2nd ed. Melbourne: Melbourne University Press; 1991. p. 125–40.
Google Scholar
Hennig W. Die Stammesgeschichte der Insekten. Frankfurt: Waldemar Kramer; 1969.
Google Scholar
Achtelig M. Die Abdomenbasis der Neuropteroidea (Insecta, Holometabola). Eine vergleichend anatomische Untersuchung des Skeletts und der Muskulatur. Zoomorphologie. 1975;82:201–42.
Google Scholar
Achtelig M. Entwicklung und Morphologie der inneren und ausseren weiblichen Genitalorgane der Kamelhalsfliegen (Neuropteroidea: Raphidioptera). Entomol Ger. 1978;4:140–63.
Google Scholar
Beutel RG, Gorb SN. Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res. 2001;39:177–207.
Google Scholar
Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC. The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol. 1997;46:1–68.
CAS
PubMed
Google Scholar
Wheeler WC, Hayashi CY. The phylogeny of the extant hexapod orders. Cladistics. 2001;17:173–92.
Google Scholar
McKenna DD, Farrell BD. 9-genes reinforce the phylogeny of Holometabola and yield alternate views on the phylogenetic placement of Strepsiptera. PLoS One. 2010;5:e11887.
PubMed
PubMed Central
Google Scholar
Aspöck U, Haring E, Aspöck H. Biogeographical implications of a molecular phylogeny of the Raphidiidae (Raphidioptera). Mitteilungen der Dtsch Gesellschaft für Allg und Angew Entomol. 2012;18:575–82.
Google Scholar
Withycombe CL. XV. Some aspects of the biology and morphology of the Neuroptera. With special reference to the immature stages and their possible phylogenetic significance. Trans R Entomol Soc London. 1925;72:303–411.
Google Scholar
Jandausch K, Beutel RG, Bellstedt R. The larval morphology of the spongefly Sisyra nigra (Retzius, 1783) (Neuroptera: Sisyridae). J Morphol. 2019;280:1742–58.
PubMed
Google Scholar
Zwick P. Beschreibung der aquatischen Larve von Neurorthus fallax (Rambur) und Errichtung der neuen Planipennierfamilie Neurorthidae fam. Nov. Gewässer und Abwässer. 1967;44/45:65–86.
Google Scholar
Gaumont J. L’appareil digestif des larves de Planipennes. Ann Sci Nat Zool Biol Anim. 1976;18:145–250.
Google Scholar
Huelsenbeck JP, Nielsen R, Bollback JP. Stochastic mapping of morphological characters. Syst Biol. 2003;52:131–58.
PubMed
Google Scholar
Bollback JP. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics. 2006;7:1–7.
Google Scholar
Gusten R, Dettner K. The prothoracic gland of the Chrysopidae (Neuropteroidea: Planipennia). In: Zombori L, Peregovits L, editors. Proceedings of the Fourth European Congress of Entomology and the XIII Internationale Symposium fur die Entomofaunistik Mitteleuropas. Gödölö. Hungary, 1991. Budapest, Hungary. Hungarian Natural History Museum; 1992. p. 56–60.
Monserrat VJ. Larval stages of European Nemopterinae, with systematic considerations on the family Nemopteridae (Insecta, Neuroptera). Dtsch Entomol Zeitschrift. 1996;43:99–121.
Google Scholar
Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, et al. Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Curr Biol. 2012;22:1309–13.
CAS
PubMed
Google Scholar
Peters RS, Krogmann L, Mayer C, Donath A, Gunkel S, Meusemann K, et al. Evolutionary history of the Hymenoptera. Curr Biol. 2017;27:1013–8.
CAS
PubMed
Google Scholar
Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV. OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013;41:1–8.
Google Scholar
Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, et al. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res. 2011;21:1339–48.
CAS
PubMed
PubMed Central
Google Scholar
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. The genome of the model beetle and pest Tribolium castaneum. Nature. 2008;452:949–55.
CAS
PubMed
Google Scholar
Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, et al. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science. 2004;306:1937–40.
PubMed
Google Scholar
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–95.
PubMed
Google Scholar
Petersen M, Meusemann K, Donath A, Dowling D, Liu S, Peters RS, et al. Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinformatics. 2017;18:111.
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Schwentner M, Combosch DJ, Pakes Nelson J, Giribet G. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr Biol. 2017;26:1569–71.
Google Scholar
Li Z, De La Torre AR, Sterck L, Cánovas FM, Avila C, Merino I, et al. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol Evol. 2017;9:1130–47.
CAS
PubMed
PubMed Central
Google Scholar
Fernandez R, Edgecombe GD, Giribet G. Exploring phylogenetic relationships within Myriapoda and the effects of matrix composition and occupancy on phylogenomic reconstruction. Syst Biol. 2016;65:871–89.
PubMed
PubMed Central
Google Scholar
Laumer CE, Bekkouche N, Kerbl A, Goetz F, Neves RC, Sørensen MV, et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol. 2015;25:2000–6.
CAS
PubMed
Google Scholar
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, et al. Phylogenomic interrogation of Arachnida reveals systemic conflicts in phylogenetic signal. Mol Biol Evol. 2014;31:2963–84.
CAS
PubMed
Google Scholar
Von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, et al. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol. 2012;29:1031–45.
Google Scholar
Fernandez R, Sharma P, Tourinho AL, Giribet G. The opiliones tree of life: shedding light on harvestmen relationships through transcriptomics. Proc R Soc B. 2017;284:20162340.
PubMed
PubMed Central
Google Scholar
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, et al. A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol. 2010;27:2451–64.
CAS
PubMed
Google Scholar
Misof B, Misof K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol. 2009;58:21–34.
CAS
PubMed
Google Scholar
Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wägele JW, et al. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool. 2010;7:10.
PubMed
PubMed Central
Google Scholar
Wong TFK, Kalyaanamoorthy S, Meusemann K, Yeates DK, Misof B, Jermiin LS. A minimum reporting standard for multiple sequence alignments. NAR Genomics Bioinform. 2020;2.
Jermiin LS, Ho SYW, Ababneh F, Robinson J, Larkum AWD. The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol. 2004;53:638–43.
PubMed
Google Scholar
Bowker AH. A test for symmetry in contingency tables. J Am Stat Assoc. 1948;43:572–4.
CAS
PubMed
Google Scholar
Misof B, Meyer B, von Reumont BM, Kück P, Misof K, Meusemann K. Selecting informative subsets of sparse supermatrices increases the chance to find correct trees. BMC Bioinform. 2013;14:348.
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.
CAS
PubMed
Google Scholar
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
CAS
PubMed
Google Scholar
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? J Comput Biol. 2010;17:337–54.
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
CAS
PubMed
PubMed Central
Google Scholar
Lemoine F, Domelevo Entfellner J-B, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature. 2018;556:452–6.
CAS
PubMed
PubMed Central
Google Scholar
Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 2013;62:162–6.
PubMed
Google Scholar
Gouy M, Guindon S, Gascuel O. Sea view version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.
CAS
PubMed
Google Scholar
Wang H-C, Susko E, Roger AJ. The relative importance of modeling site pattern heterogeneity versus partition-wise heterotachy in phylogenomic inference. Syst Biol. 2019;68:1003–19.
PubMed
Google Scholar
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007;7(Suppl. 1):1–14.
Google Scholar
Le SQ, Lartillot N, Gascuel O. Phylogenetic mixture models for proteins. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:3965–76.
CAS
Google Scholar
Wang H-C, Minh BQ, Susko E, Roger AJ. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst Biol. 2017;67:216–35.
Google Scholar
Ababneh F, Jermiin LS, Ma C, Robinson J. Matched-pairs tests of homogeneity with applications to homologous nucleotide sequences. Bioinformatics. 2006;22:1225–31.
CAS
PubMed
Google Scholar
Jermiin LS, Jayaswal V, Ababneh F, Robinson J. Phylogenetic model evaluation. In: Keith JM, editor. Bioinformatics. Methods in molecular biology, vol. 452. Totowa: Humana Press; 2008.
Google Scholar
Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, et al. Improved modeling of compositional heterogeneity supports sponges as sister to all other animals. Curr Biol. 2017;27:3864–70.
CAS
PubMed
Google Scholar
Foster P. Modeling compositional heterogeneity. Syst Biol. 2004;53:485–95.
PubMed
Google Scholar
Zhong M, Hansen B, Nesnidal M, Golombek A, Halanych KM, Struck TH. Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. BMC Evol Biol. 2011;11:369.
PubMed
PubMed Central
Google Scholar
Kück P, Struck TH. BaCoCa - a heuristic software tool for the parallel assessment of sequence biases in hundreds of gene and taxon partitions. Mol Phylogenet Evol. 2014;70:94–8.
PubMed
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35:518–22.
CAS
PubMed
Google Scholar
Strimmer K, von Haeseler A. Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A. 1997;94:6815–9.
CAS
PubMed
PubMed Central
Google Scholar
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool. 2014;11:81.
PubMed
PubMed Central
Google Scholar
Timmermans MJTN, Barton C, Haran J, Ahrens D, Culverwell CL, Ollikainen A, et al. Family-level sampling of mitochondrial genomes in Coleoptera: compositional heterogeneity and phylogenetics. Genome Biol Evol. 2016;8:161–75.
CAS
Google Scholar
Frandsen PB, Calcott B, Mayer C, Lanfear R. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evol Biol. 2015;15:13.
PubMed
PubMed Central
Google Scholar
Edwards SV. Is a new and general theory of molecular systematics emerging? Evolution. 2009;63:1–19.
CAS
PubMed
Google Scholar
Xu B, Yang Z. Challenges in species tree estimation under the multispecies coalescent model. Genetics. 2016;204:1353–68.
CAS
PubMed
PubMed Central
Google Scholar
Tonini J, Moore A, Stern D, Shcheglovitova M, Ortí G. Concatenation and species tree methods exhibit statistically indistinguishable accuracy under a range of simulated conditions. PLOS Curr Tree Life. 2015;7 ecurrents.tol.34260cc27551a527b124ec5f6334b6be.
de Queiroz A, Gatesy J. The supermatrix approach to systematics. Trends Ecol Evol. 2007;22:34–41.
PubMed
Google Scholar
Sayyari E, Whitfield JB, Mirarab S. Fragmentary gene sequences negatively impact gene tree and species tree reconstruction. Mol Biol Evol. 2017;34:3279–91.
CAS
PubMed
Google Scholar
Liu L, Xi Z, Wu S, Davis CC, Edwards SV. Estimating phylogenetic trees from genome-scale data. Ann N Y Acad Sci. 2015;1360:36–53.
PubMed
Google Scholar
Springer MS, Gatesy J. The gene tree delusion. Mol Phylogenet Evol. 2016;94:1–33.
PubMed
Google Scholar
Simmons MP, Gatesy J. Coalescence vs. concatenation: sophisticated analyses vs. first principles applied to rooting the angiosperms. Mol Phylogenet Evol. 2015;91:98–122.
PubMed
Google Scholar
Gatesy J, Springer MS. Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol Phylogenet Evol. 2014;80:231–66.
PubMed
Google Scholar
Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 2018;19(Suppl 6):15–30.
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:287–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
Google Scholar
Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.
CAS
PubMed
PubMed Central
Google Scholar
Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, et al. Best practices for justifying fossil calibrations. Syst Biol. 2012;61:346–59.
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
CAS
PubMed
Google Scholar
Wolfe JM, Daley AC, Legg DA, Edgecombe GD. Fossil calibrations for the arthropod tree of life. Earth Sci Rev. 2016;160:43–110.
Google Scholar
dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol. 2011;28:2161–72.
PubMed
Google Scholar
Rannala B, Yang Z. Inferring speciation times under an episodic molecular clock. Syst Biol. 2007;56:453–66.
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2015.
Google Scholar
Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, Beutel RG, et al. Data from: an integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). Dryad Digit Repository. 2020. https://doi.org/10.5061/dryad.1jwstqjrs.
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. 2001. https://www.mesquiteproject.org/.
Google Scholar
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Google Scholar
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–8.
Google Scholar