Ćalić I, Bussotti F, Martínez-García PJ, Neale DB. Recent landscape genomics studies in forest trees—what can we believe? Tree Genet Genomes. 2016;12(1):3.
Article
Google Scholar
Di Pierroa EA, Mosca E, González-Martínez SC, Binelli G, Neale DB, La Porta N. Adaptive variation in natural alpine populations of Norway spruce (Picea abies [L.] karst) at regional scale: landscape features and altitudinal gradient effects. Forest Ecol Manag. 2017;405:350–9.
Article
Google Scholar
Yang J, Miao CY, Mao RL, Li Y. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Front Plant Sci. 2017;8:481.
PubMed
PubMed Central
Google Scholar
Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.
Article
Google Scholar
Li Y, Zhang XX, Mao RL, Yang J, Miao CY, Li Z, Qiu XY. Ten years of landscape genomics: challenges and opportunities. Front Plant Sci. 2017;8:2136.
Article
Google Scholar
Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity. 2008;100(2):158–70.
Article
CAS
Google Scholar
Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18(4):189–97.
Article
Google Scholar
Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: implications for adaptive potential to projected climate change. Mol Ecol. 2017;26(21):6002–20.
Article
CAS
Google Scholar
Yoder JB, Tiffin P. Effects of gene action, marker density, and timing of selection on the performance of landscape genomic scans of local adaptation. J Hered. 2018;109(1):16–28.
Article
Google Scholar
Schoville S, Bonin A, Francois O, Lobreaux S, Melodelima C, Manel S. Adaptive genetic variation on the landscape: methods and cases. Annu Rev Ecol Syst. 2012;43:23–43.
Article
Google Scholar
Rundle HD, Nosil P. Ecological speciation. Ecol Lett. 2005;8(3):336–52.
Article
Google Scholar
Dionne M, Caron F, Dodson JJ, Bernatchez L. Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol. 2008;17(10):2382–96.
Article
CAS
Google Scholar
Poelchau MF, Hamrick JL. Differential effects of landscape-level environmental features on genetic structure in three codistributed tree species in Central America. Mol Ecol. 2012;21(20):4970–82.
Article
Google Scholar
Arciero E, Kraaijenbrink T, Asan HM, Mezzavilla M, Ayub Q, Wang W, Pingcuo Z, Yang H, Wang J, Jobling MA, Driem GV, Xue Y, Knijff PD, Tyler-Smith C. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Mol Biol Evol. 2018;35(8):1916–33.
Article
CAS
Google Scholar
Brennan RS, Healy TM, Bryant HJ, La MV, Schulte PM, Whitehead A. Integrative population and physiological genomics reveals mechanisms of adaptation in killifish. Mol Biol Evol. 2018;35(11):2639–53.
CAS
PubMed
Google Scholar
Chen C, Wang H, Liu Z, Chen X, Tang J, Meng F, Shi W. Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana). Mol Biol Evol. 2018;35(9):2260–71.
Article
CAS
Google Scholar
Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, Sanchez I, Couloux A, Guy J, Franco-Duarte R, Marcet-Houben M, Gabaldon T, Schuller D, Sampaio JP, Dequin S. Adaptation of S. cerevisiae to fermented food environments reveals remarkable renome plasticity and the footprints of domestication. Mol Biol Evol. 2018;35(7):1712–27.
Article
CAS
Google Scholar
Miao CY, Li Y, Yang J, Mao RL. Landscape genomics reveal that ecological character determines adaptation: a case study in smoke tree (Cotinus coggygria Scop.). BMC Evol Biol. 2017;17:202.
Article
Google Scholar
Li JX, Zhu XH, Li Y, Liu Y, Qian ZH, Zhang XX, Sun Y, Ji LY. Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol. 2018;18:306.
Article
Google Scholar
Yang J, Li Y, Miao CY, Mao RL. Landscape genomics analysis of Achyranthes bidentata reveal adaptive genetic variations are driven by environmental variations relating to ecological habit. Popul Ecol. 2017;59(4):355–62.
Article
Google Scholar
Kültz D. Physiological mechanisms used by fish to cope with salinity stress. J Exp Biol. 2015;218(Pt 12):1907–14.
Article
Google Scholar
Givnish TJ. Convergent evolution, adaptive radiation, and species diversification in plants. Encycl of Evol Biol. 2016:362–73.
Savolainen O, Pyhäjärvi T, Knürr T. Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst. 2007;38:595–619.
Article
Google Scholar
Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O. Potential for evolutionary responses to climate change–evidence from tree populations. Glob Chang Biol. 2013;19:1645–61.
Article
Google Scholar
Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, Ullrich KK, Postolache D, Vendramin GG, Fady B. Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba mill. In the French Mediterranean Alps. Mol Ecol. 2016;25(3):776–94.
Article
Google Scholar
Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P. Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol. 2007;21(3):697–708.
Article
Google Scholar
Wang XP, Wang JL, Liu JL, Wang GZ. Climatic regionalization on the distribution area of Pinus bungeana. Sci Silvae Sin. 1999;35(4):101–6.
Google Scholar
Bo NL. Study on the community landscape of Pinus bungeana in southern Taihang Mountains. Changsha: Master’s thesis: Central South University of Forestry and Technology; 2008.
Zhou HJ. Genetic diversity and population structure of natural endangered forest tree Pinus bungeana in China. Xi'an: Master’s thesis, Northwest University; 2013.
Collard BCY, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Report. 2009;27(1):86–93.
Article
CAS
Google Scholar
Barley AJ, Monnahan PJ, Thomson RC, Grismer LL, Brown RM. Sun skink landscape genomics: assessing the roles of micro-evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Mol Ecol. 2015;24(8):1696–712.
Article
Google Scholar
Leamy LJ, Lee CR, Song QJ, Mujacic I, Luo Y, Chen CY, Li CB, Kjemtrup S, Song BH. Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in Northeast Asia. Ecol Evol. 2016;6(17):6332–44.
Article
Google Scholar
Ohsawa T, Ide Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr. 2008;17(2):152–63.
Article
Google Scholar
Zhao H, Zheng YQ, Li B, Lin FR, Zhang CH, Cheng BB, Huang P. Genetic structure analysis of natural populations of Pinus bungeana in different geographical regions. J Plant Genet Resour. 2013;14(3):395–401.
Google Scholar
Yang YX, Wang ML, Liu ZL, Zhu J, Yan MY, Li ZH. Nucleotide polymorphism and phylogeographic history of an endangered conifer species Pinus bungeana. Biochem Syst Ecol. 2016;64:89–96.
Article
CAS
Google Scholar
Berthouly-Salazar C, Thuillet AC, Rhoné B, Mariac C, Ousseini IS, Couderc M, Tenaillon MI, Vigouroux Y. Genome scan reveals selection acting on genes linked to stress response in wild pearl millet. Mol Ecol. 2016;25(21):5500–12.
Article
CAS
Google Scholar
Peng JF, Peng KY, Li JB. Climate-growth response of Chinese white pine (Pinus armandii) at different age groups in the Baiyunshan National Nature Reserve, Central China. Dendrochronologia. 2018;49:102–9.
Article
Google Scholar
L M, CY S, SL F, JY L, WH Y. Temporal and spatial patterns in aboveground biomass within different habitats in a sub-tropical forest. J Trop For Sci. 2018;30(2):143–53.
Google Scholar
Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973;70(12):3321–3.
Article
CAS
Google Scholar
Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol. 2002;11(1):139–51.
Article
CAS
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59.
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14(8):2611–20.
Article
CAS
Google Scholar
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–61.
Article
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23(14):1801–6.
Article
CAS
Google Scholar
Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004;4(1):137–8.
Article
Google Scholar
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Mol Ecol Resour. 2010;10(3):564–7.
Article
Google Scholar
Hijmans RJ, Guarino L, Cruz M, Rojas E. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl. 2001;127:15–9.
Google Scholar
Ter Braak CJF, Smilauer P. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). New York: Microcomputer Power; 2002.
Google Scholar
Foll M, Gaggiotti OE. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180(2):977–93.
Article
Google Scholar
Manel S, Conord C, Després L. Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol Biol. 2009;9:288.
Article
Google Scholar
Frichot E, Schoville SD, Bouchard G, Francois O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30(7):1687–99.
Article
CAS
Google Scholar
Vangestel C, Vázquez-Lobo A, Martínez-García PJ, Calic I, Wegrzyn JL, Neale DB. Patterns of neutral and adaptive genetic diversity across the natural range of sugar pine (Pinus lambertiana Dougl.). Tree Genet Genomes. 2016;12(3):51.
Article
Google Scholar
Whitlock MC, McCauley DE. Indirect measures of gene flow and migration: FST≠1/(4Nm+1). Heredity. 1999;82(2):117–25.
Article
Google Scholar
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190(3):231–59.
Article
Google Scholar
Wang W, Tian CY, Li YH, Li Y. Molecular data and ecological niche modeling reveal phylogeographical pattern of Cotinus coggygria (Anacardiaceae) in China’s warm-temperate zone. Plant Biol. 2014;16(6):1114–20.
CAS
PubMed
Google Scholar
Fu ZZ, Li YH, Zhang KM, Li Y. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China’s warm-temperate zone in response to climate change during the Pleistocene. BMC Evol Biol. 2014;14:114.
Article
Google Scholar
Bai WN, Wang WT, Zhang DY. Phylogeographic breaks within Asian butternuts indicate the existence of a phytogeographic divide in East Asia. New Phytol. 2016;209(4):1757–72.
Article
CAS
Google Scholar