Grant BR, Grant PR. Evolution of Darwin's finches caused by a rare climatic event. Proc R Soc B Biol Sci. 1993;251(1331):111–7.
Article
Google Scholar
Soons J, Genbrugge A, Podos J, Adriaens D, Aerts P, Dirckx J, et al. Is beak morphology in Darwin's finches tuned to loading demands? PLoS One. 2015;10(6):e0129479.
Article
Google Scholar
Bright JA, Marugán-Lobón J, Cobb SN, Rayfield EJ. The shapes of bird beaks are highly controlled by nondietary factors. PNAS. 2016;113(19):5352–7.
Article
CAS
Google Scholar
Feeding in Birds RM. Approaches and opportunities. In: Schwenk K, editor. Feeding. San Diego, California: Academic Press; 2000. p. 395–408.
Navalón G, Bright JA, Marugán-Lobón J, Rayfield EJ. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution. 2018. https://doi.org/10.1111/evo.13655.
Clayton DHM, Moyer BR, Bush SE, Jones TG, Gardiner DW, Rhodes BB, Goller F. Adaptive significance of avian beak morphology for ectoparasite control. Proc R Soc B Biol Sci. 2010;272:811–7.
Article
Google Scholar
Rico-Guevara A, Araya-Salas M. Bills as daggers? A test for sexually dimorphic weapons in a lekking hummingbird. Behav Ecol. 2015;26(1):21–9.
Article
Google Scholar
Huber SK, Podos J. Beak morphology and song features covary in a population of Darwin’s finches (Geospiza fortis). Biol J Linn Soc. 2006;88:489–98.
Article
Google Scholar
Tattersall GJ, Arnaout B, Symonds MRE. The evolution of the avian bill as a thermoregulatory organ. Biol Rev. 2016;92:1630–56.
Article
Google Scholar
Klingenberg CP, Marugán-Lobón J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst Biol. 2013;62(4):591–610.
Article
Google Scholar
Cooney CR, Bright JA, Capp EJR, Chira AM, Hughes EC, Moody CJA, et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature. 2017;542:344–7.
Article
CAS
Google Scholar
Chira AM, Cooney CR, Bright JA, Capp EJR, Hughes EC, Moody CJA, et al. Correlates of rate heterogeneity in avian ecomorphological traits. Ecol Lett. 2018;21:1505–14.
Article
CAS
Google Scholar
Felice RN, Goswami A. Developmental origins of mosaic evolution in the avian cranium. PNAS. 2018;115:555–60.
Article
CAS
Google Scholar
Marugán-Lobón J, Blanco Miranda D, Chamero B, Martín Abad H. On the importance of examining the relationship between shape data and biologically meaningful variables. An example studying allometry with geometric morphometrics. Spanish J Palaeontol. 2013;28:139–48.
Google Scholar
Young NM, Linde-Medina M, Fondon JWI, Hallgrimsson B, Marcucio RS. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nature Ecology Evol. 2017;1:0095.
Article
Google Scholar
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. 2015;526(7574):569–73.
Article
CAS
Google Scholar
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–31.
Article
CAS
Google Scholar
Collar N. Parrots (Psittacidae). 2018. In: Handbook of Birds of the world alive [Internet]. Barcelona: Lynx Edicions.
Tokita M. The skull development of parrots with special reference to the emergence of a morphologically unique Cranio-facial hinge. Zool Sci. 2003;20(6):749–58.
Article
Google Scholar
Tokita M, Kiyoshi T, Armstrong KN. Evolution of craniofacial novelty in parrots through developmental modularity and heterochrony. Evol Dev. 2007;9(6):590–601.
Article
CAS
Google Scholar
Rowley I. Cockatoos (Cacatudiae). 2018. In: Handbook of Birds of the world alive [Internet]. Barcelona: Lynx Edicions.
Carril J, Degrange FJ, Tambussi CP. Jaw myology and bite force of the monk parakeet (Aves, Psittaciformes). J Anat. 2015;227:33–44.
Article
Google Scholar
Dunning JBJCRC. Handbook of avian body masses (2nd edition). Florida. USA: CRC Press; 2008.
Google Scholar
Soons J, Herrel A, Genbrugge A, Aerts P, Podos J, Adriaens D, et al. Mechanical stress, fracture risk and beak evolution in Darwin’s ground finches (Geospiza). Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1543):1093–8.
Article
Google Scholar
Herrel A, Podos J, Huber SK, Hendry AP. Bite performance and morphology in a population of Darwin’s finches; implications for the evolution of beak shape. Funct Ecol. 2005;19:43–8.
Article
Google Scholar
Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature. 2006;442(7102):563–7.
Article
CAS
Google Scholar
Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ. Bmp4 and morphological variation of beaks in Darwin’s finches. Science. 2004;305(5689):1462–5.
Article
CAS
Google Scholar
Fritz JA, Brancale J, Tokita M, Burns KJ, Hawkins MB, Abzhanov A, et al. Shared developmental programme strongly constrains beak shape diversity in songbirds. Nat Commun. 2014;5:3700.
Article
CAS
Google Scholar
Hu D, Young NM, Xu Q, Jamniczky H, Green RM, Mio W, et al. Signals from the brain induce variation in avain facial shape. Dev Dyn. 2015;244:1133–43.
Article
Google Scholar
Goswami A, Smaers JB, Soligo C, Polly PD. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1649):20130254.
Article
CAS
Google Scholar
Felice RN, Randau M, Goswami A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution. 2018. https://doi.org/10.1111/evo.13608.
Villmoare B. Morphological integration, evolutionary constraints, and extinction: a computer simulation-based study. Evol Biol. 2012;40(1):76–83.
Article
Google Scholar
Marroig G, Shirai LT, Porto A, de Oliveira FB, De Conto V. The evolution of modularity in the mammalian skull II: evolutionary consequences. Evol Biol. 2009;36(1):136–48.
Article
Google Scholar
Waterhouse DM. Parrots in a nutshell: the fossil record of Psittaciformes (Aves). Hist Biol. 2006;18(2):227–38.
Article
Google Scholar
Schweizer M, Seehausen O, Hertwig ST. Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations. J Biogeogr. 2011;38(11):2176–94.
Article
Google Scholar
Lauder GV. On the inference of function from structure. In: Thomason JJ, editor. Functional morphology in vertebrate paleontology. Cambridge, UK: Cambridge University Press; 1995. p. 1–18.
Google Scholar
Van der Meij MAA, Bout RG. The relationship between shape of the skull and bite forces in finches. J Exp Biol. 2008;211:1668–80.
Article
Google Scholar
Tokita M. Morphogenesis of parrot jaw muscles: understanding the development of an evolutionary novelty. J Morphol. 2004;259(1):69–81.
Article
Google Scholar
Homberger DG. The avian lingual and laryngeal apparatus within the context of the head and jaw apparatus, with comparisons to the mammalian condition: functional morphology and biomechanics of evaporative cooling, feeding, drinking, and vocalization. In: Maina JN, editor. The biology of the avian respiratory system: evolution, development, structure and function. Cham: Springer International Publishing; 2017. p. 27–97.
Chapter
Google Scholar
Homberger DG. Comparative beak morphology of two subspecies of Australian red-tailed black-cockatoos: small changes with significant functional affects as a model for macroevolutionary processes. Anat Rec. 2016;299:131–2.
Google Scholar
Fruciano C. Measurment error in geometric morphometrics. Dev Genes Evol. 2016;226:139–58.
Article
Google Scholar
Fruciano C, Celik MA, Butler K, Dooley T, Weisbecker V, Phillips MJ. Sharing is caring? Measurement error and the issues arising from combining 3D morphometric datasets. Ecology and Evolution. 2017;7:7034–46.
Article
Google Scholar
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10(4):e1003537.
Article
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491(7424):444–8.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. 2018: v. 3.5.1.
Adams DC, Collyer ML, Kaliontzopoulou A, Sherratt E. Geomorph: software for geometric morphometric analysis. 2017: v. 3.0. p. 7. https://cran.r-project.org/package=geomorph
Adams DC, Otárola-Castillo E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol. 2013;4(4):393–9.
Article
Google Scholar
Gunz P, Mitteroecker P, Bookstein FL. Semilandmarks in three dimensions. In: Slice DE, editor. Modern morphometrics in physical anthropology. New York: Kluwer Academic/Plenum Publishers; 2005. p. 73–98.
Chapter
Google Scholar
Mardia KV, Bookstein FL, Moreton IJ. Statistical assessment of bilateral symmetry of shapes. Biometrika. 2000;87:285–300.
Article
Google Scholar
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3(2):217–23.
Article
Google Scholar
Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol. 2014;63(5):685–97.
Article
Google Scholar
Adams DC. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution. 2014;68:2675–88.
Article
Google Scholar
Wilman H, Belmaker J, Simpson J, de la Rossa C, Rivadeneira MM, Jetz W. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology. 2014;95:2027.
Article
Google Scholar
Adams DC, Felice RN. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS One. 2014;9(4):e94335.
Article
Google Scholar
pairwiseAdonis MAP. Pairwise multilevel comparison using Adonis; 2017. p. v. 0.1. https://github.com/pmartinezarbizu/pairwiseAdonis
Joseph L, Toon A, Schirtzinger EE, Wright TF, Schodde R. A revised nomenclature and classification for family-group taxa of parrots (Psittaciformes). Zootaxa. 2012;3205:26–40.
Article
Google Scholar