Decker H, Van Holde KE. Oxygen and the evolution of life. Heidelberg: Springer; 2011.
Book
Google Scholar
Kanvah S, Joseph J, Schuster GB, Barnett RN, Cleveland CL, Landman U. Oxidation of DNA: damage to nucleobases. Accounts Chem Res. 2010;43:280–7.
Article
CAS
Google Scholar
Delaney S, Jarem DA, Volle CB, Yennie CJ. Chemical and biological consequences of oxidatively damaged guanine in DNA. Free Radic Res. 2012;46:420–41.
Article
CAS
Google Scholar
Kauppila JHK, Stewart JB. Mitochondrial DNA: radically free of free-radical driven mutations. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2015;1847:1354–61.
Article
CAS
Google Scholar
Sheinman M, Hermsen R. Effects of DNA oxidation on the evolution of genomes. bioRxiv. 2017. https://doi.org/10.1101/150425.
Osborne AE, Sanchez JA, Wangh LJ, Ravigadevi S, Hayes KC. Oxidative damage is not a major contributor to AZT-induced mitochondrial mutations. J AIDS Clin Res. 2015;6:444.
Article
Google Scholar
De Bont R, van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis. 2004;19:169–85.
Article
Google Scholar
Agashe D, Shankar N. The evolution of bacterial DNA base composition. J Exp Zool Part B. 2014;322:517–28.
Article
CAS
Google Scholar
Rocha EPC, Feil EJ. Mutational patterns cannot explain genome composition: are there any neutral sites in the genomes of bacteria? PLoS Genet. 2010;6:e1001104.
Article
Google Scholar
Naya H, Romero H, Zavala A, Alvarez B, Musto H. Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol. 2002;55:260–4.
Article
CAS
Google Scholar
Martin AP. Metabolic-rate and directional nucleotide substitution in animal mitochondrial-DNA. Mol Biol Evol. 1995;12:1124–31.
CAS
PubMed
Google Scholar
Friedman KA, Heller A. On the non-uniform distribution of guanine in introns of human genes: possible protection of exons against oxidation by proximal intron poly-G sequences. J Phys Chem B. 2001;105:11859–65.
Article
CAS
Google Scholar
Kanvah S, Schuster GB. The sacrificial role of easily oxidizable sites in the protection of DNA from damage. Nucleic Acids Res. 2005;33:5133–8.
Article
CAS
Google Scholar
Schroeder JW, Yeesin P, Simmons LA, Wang JD. Sources of spontaneous mutagenesis in bacteria. Crit Rev Biochem Mol Biol. 2018;53:29–48.
Article
CAS
Google Scholar
Foster PL, Lee H, Popodi E, Townes JP, Tang HX. Determinants of spontaneous mutation in the bacterium Escherichia coli as revealed by whole-genome sequencing. Proc Natl Acad Sci U S A. 2015;112:E5990–E9.
Article
CAS
Google Scholar
Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and a → C substitutions. J Biol Chem. 1992;267:166–72.
CAS
PubMed
Google Scholar
Romero H, Pereira E, Naya H, Musto H. Oxygen and guanine–cytosine profiles in marine environments. J Mol Evol. 2009;69:203–6.
Article
CAS
Google Scholar
Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. MBio. 2016;7:e00805–16.
Article
CAS
Google Scholar
Haro-Moreno JM, Lopez-Perez M, de la Torre J, Picazo A, Camacho A. Rodriguez-Valera F. Fine stratification of microbial communities through a metagenomic profile of the photic zone. bioRxiv. 2017. https://doi.org/10.1101/134635.
Mendez R, Fritsche M, Porto M, Bastolla U. Mutation bias favors protein folding stability in the evolution of small populations. PLoS Comput Biol. 2010;6:e1000767.
Article
Google Scholar
Mann S, Chen YPP. Bacterial genomic G plus C composition-eliciting environmental adaptation. Genomics. 2010;95:7–15.
Article
CAS
Google Scholar
Karpinets TV, Park BH, Uberbacher EC. Analyzing large biological datasets with association networks. Nucleic Acids Res. 2012;40:e131.
Article
CAS
Google Scholar
Goncearenco A, Ma B-G, Berezovsky IN. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins. Nucleic Acids Res. 2014;42:2879–92.
Article
CAS
Google Scholar
Bohlin J, Snipen L, Hardy SP, Kristoffersen AB, Lagesen K, Dønsvik T, et al. Analysis of intra-genomic GC content homogeneity within prokaryotes. BMC Genomics. 2010;11:464.
Article
Google Scholar
Ogier J-C, Lafarge V, Girard V, Rault A, Maladen V, Gruss A, et al. Molecular fingerprinting of dairy microbial ecosystems by use of temporal temperature and denaturing gradient gel electrophoresis. Appl Environ Microbiol. 2004;70:5628–43.
Article
CAS
Google Scholar
Pavlović-Lažetić GM, Mitić NS, Kovačević JJ, Obradović Z, Malkov SN, Beljanski MV. Bioinformatics analysis of disordered proteins in prokaryotes. BMC Bioinformatics. 2011;12:66.
Article
Google Scholar
Meiler A, Klinger C, Kaufmann M. ANCAC: amino acid, nucleotide, and codon analysis of COGs – a tool for sequence bias analysis in microbial orthologs. BMC Bioinformatics. 2012;13:223.
Article
Google Scholar
Malik AA, Thomson BC, Whiteley AS, Bailey M, Griffiths RI. Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. MBio. 2017;8:e00799–17.
Article
Google Scholar
Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ. 2017;5:e3865.
Article
Google Scholar
Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.
Article
Google Scholar
Vieira-Silva S, Rocha EPC. An assessment of the impacts of molecular oxygen on the evolution of proteomes. Mol Biol Evol. 2008;25:1931–42.
Article
CAS
Google Scholar
Bohlin J, Brynildsrud O, Vesth T, Skjerve E, Ussery DW. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes. PLoS One. 2013;8:e69878.
Article
CAS
Google Scholar
Lassalle F, Perian S, Bataillon T, Nesme X, Duret L, Daubin V. GC-content evolution in bacterial genomes: the biased gene conversion hypothesis expands. PLoS Genet. 2015;11:e1004941.
Article
Google Scholar
Pessia E, Popa A, Mousset S, Rezvoy C, Duret L, Marais GAB. Evidence for widespread GC-biased gene conversion in eukaryotes. Genome Biol Evol. 2012;4:787–94.
Article
Google Scholar
Hurst LD, Merchant AR. High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc R Soc B. 2001;268:493–7.
Article
CAS
Google Scholar
Musto H, Naya H, Zavala A, Romero H, Alvarez-Valin F, Bernardi G. Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett. 2004;573:73–7.
Article
CAS
Google Scholar
Musto H, Naya H, Zavala A, Romero H, Alvarez-Valin F, Bernardi G. Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun. 2006;347:1–3.
Article
CAS
Google Scholar
Basak S, Mandal S, Ghosh TC. Correlations between genomic GC levels and optimal growth temperatures: some comments. Biochem Biophys Res Commun. 2005;327:969–70.
Article
CAS
Google Scholar
Marashi S-A, Ghalanbor Z. Correlations between genomic GC levels and optimal growth temperatures are not ‘robust’. Biochem Biophys Res Commun. 2004;325:381–3.
Article
CAS
Google Scholar
Wang H-C, Susko E, Roger AJ. On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun. 2006;342:681–4.
Article
CAS
Google Scholar
Symonds MRE. Blomberg SP. a primer on phylogenetic generalised least squares. In: Garamszegi LZ, editor. Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 105–30.
Chapter
Google Scholar
Long H, Sung W, Kucukyildirim S, Williams E, Miller SF, Guo W, et al. Evolutionary determinants of genome-wide nucleotide composition. Nat Ecol Evol. 2018;2:237–40.
Article
Google Scholar
Slesak I, Slesak H, Zimak-Piekarczyk P, Rozpadek P. Enzymatic antioxidant systems in early anaerobes: theoretical considerations. Astrobiology. 2016;16:348–58.
Article
CAS
Google Scholar
Brioukhanov AL, Netrusov AI. Aerotolerance of strictly anaerobic microorganisms and factors of defense against oxidative stress: a review. Appl Biochem Microbiol. 2007;43:567–82.
Article
CAS
Google Scholar
Jenney FE, Verhagen MFJM, Cui XY, Adams MWW. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science. 1999;286:306–9.
Article
CAS
Google Scholar
Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Verezemska O, Isbandi M, et al. Genomes OnLine database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 2017;45:D446–D56.
Article
CAS
Google Scholar
Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer K-H, et al. Release LTPs104 of the all-species living tree. Syst Appl Microbiol. 2011;34:169–70.
Article
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
Google Scholar
Yamada-Noda M, Ohkusu K, Hata H, Shah MM, Nhung PH, Sun XS, et al. Mycobacterium species identification - a new approach via dnaJ gene sequencing. Syst Appl Microbiol. 2007;30:453–62.
Article
CAS
Google Scholar
Alexandre A, Laranjo M, Young JPW, Oliveira S. dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol. 2008;58:2839–49.
Article
CAS
Google Scholar
Huang CH, Chang MT, Huang LN, Chu WS. The dnaJ gene as a molecular discriminator to differentiate among species and strain within the Lactobacillus casei group. Mol Cell Probes. 2015;29:479–84.
Article
CAS
Google Scholar
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5.
Article
CAS
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43:D130–D7.
Article
CAS
Google Scholar
Thompson J, Higgins D, Gibson T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
Google Scholar
Whiteside MD, Winsor GL, Laird MR, Brinkman FSL. OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. Nucleic Acids Res 2013;41:D366-D76.
Fulton DL, Li YY, Laird MR, Horsman BG, Roche FM, Brinkman FS. Improving the specificity of high-throughput ortholog prediction. BMC Bioinformatics. 2006;7:270.
Article
Google Scholar
BLAST: Basic local alignment search tool. https://blast.ncbi.nlm.nih.gov/Blast.cgi.
Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.
CAS
PubMed
Google Scholar
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2018:bty633-bty.
Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics. 2018;34:1037–9.
Article
CAS
Google Scholar