Ozenda P. La végétation de la chaîne alpine dans l’espace montagnard européen. Paris: Masson; 1985.
Google Scholar
Ronikier M. Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon. 2011;60:373–89.
Article
Google Scholar
Mráz P, Ronikier M. Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc. 2016;119:528–59.
Article
Google Scholar
Mráz P, Barabas D, Lengyelová L, Turis P, Schmotzer A, Janišová M, Ronikier M. Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. Biol J Linn Soc. 2016;119:630–48.
Article
Google Scholar
Tzedakis PC, Emerson BC, Hewitt GM. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol Evol. 2013;28:696–704.
Article
CAS
PubMed
Google Scholar
Schmitt T. Molecular biogeography of the high mountain systems of Europe: an overview. In: Catalan J, Ninot J, Aniz M, editors. High mountain conservation in a changing world. Advances in global change research, vol. 62. Cham: Springer; 2017. p. 63–74.
Google Scholar
Bruchmann I, Hobohm C. Factors that create and increase endemism. In: Hobohm C, editor. Endemism in vascular plants. Dordrecht: Springer; 2014. p. 51–68.
Chapter
Google Scholar
Pawłowski B. Remarques sur l'endémisme dans la flore des Alpes et des Carpates. Vegetatio. 1970;21:181–243.
Article
Google Scholar
Hurdu B-I, Escalante T, Puşcaş M, Novikoff A, Bartha L, Zimmermann NE. Exploring the different facets of plant endemism in the south-eastern Carpathians: a manifold approach for the determination of biotic elements, centres and areas of endemism. Bot J Linn Soc. 2016;119:649–72.
Article
Google Scholar
Aeschimann D, Rasolofo N, Theurillat J-P. Analyse de la flore des Alpes, vol. 1: Historique et biodiversité. Candollea. 2011a;66:27–55.
Kadereit JW. The role of in situ species diversification for the evolution of high vascular plant species diversity in the European Alps. – A review and interpretation of phylogenetic studies of the endemic flora of the Alps. Perspect Pl Ecol Evol Syst. 2017;26:28–38.
Aeschimann D, Rasolofo N, Theurillat J-P. Analyse de la flore des Alpes, vol. 2: Biodiversité et chorologie. Candollea. 2011b;66:225–53.
Article
Google Scholar
Webb DA, Gornall RJ. Saxifrages of Europe: with notes on African, American and some Asiatic species. London: Helm; 1989.
Google Scholar
Pax F. Grundzüge der Pflanzenverbreitung in der Karpathen, vol. 1–2. Leipzig: Engelmann; 1898–908.
Kliment J. Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre ako endemické taxóny [Annotated survey of the vascular plants of the Slovak flora recorded in the literature as endemic taxa]. Bull Slov Bot Společnost. 1999;21(Suppl 4):1–434.
Google Scholar
Engler HGA, Irmscher E. Saxifragaceae – Saxifraga II. In: Engler HGA, editor. Pflanzenreich, vol. 69 (IV, 117), Saxifragaceae – Saxifraga. Leipzig: Engelmann; 1919. p. [1–47] 449–709.
Pawłowski B. Die geographischen Elemente und die Herkunft der Flora der subnivalen Vegetationsstufe im Tatra-Gebirge. Bull Int Acad Polon Sci, Cl Sci Math, Sér B, Sci Nat. 1928;1928:161–202.
Google Scholar
Pawłowska S. De positione systematica speciei Saxifraga Wahlenbergii Ball (= S. perdurans Kit.). Fragm Florist Geobot. 1966;12:337–47.
Skalińska M. Cytological studies in the flora of the Tatra Mts. A synthetic review. Acta biol Cracov. Ser Bot. 1963;6:203–33.
Google Scholar
Schneeweiss GM, Schönswetter P. Feinverbreitung, Ökologie und Gesellschaftsanschluß reliktischer Gefäßpflanzen der östlichen Niederen Tauern (Steiermark, Österreich). Stapfia. 1999;61:1–242.
Google Scholar
Tribsch A. Areas of endemism of vascular plants in the eastern Alps in relation to Pleistocene glaciation. J Biogeogr. 2004;31:747–60.
Article
Google Scholar
Köckinger H. Saxifraga styriaca spec. Nova (Saxifragaceae) – an endemic species of the eastern Niedere Tauern Mts. (Styria, Austria). Phyton. 2003;43:79–108.
Google Scholar
Piękoś-Mirkowa H, Mirek Z, Miechówka A. Endemic vascular plants in the polish Tatra Mts. – distribution and ecology. Polish Bot Stud. 1996;12:1–107.
Google Scholar
Pawłowski B. Flora Tatr: Rośliny naczyniowe, vol. 1. Warszawa: Państwowe Wydanwnictwo Naukowe; 1956.
Google Scholar
Caudullo G, de Rigo D. Pinus cembra in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, editors. European atlas of forest tree species. Luxembourg: Publication Office of the European Union; 2016. p. 120–1.
Google Scholar
Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabarís C, Sebastiani F, Vendramin GG. Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J Biogeogr. 2009;36(9):1798–806.
Article
Google Scholar
Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P, IntraBioDiv Consortium. Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern alpine refugium. J Biogeogr. 2007;34:2100–14.
Article
Google Scholar
Koch M, Dobeš C, Bernhardt KG, Kochjarová J. Cochlearia macrorrhiza (Brassicaceae): a bridging species between Cochlearia taxa from the eastern Alps and the Carpathians? Plant Syst Evol. 2003;242:137–47.
Article
Google Scholar
Klein JT, Kadereit JW. Phylogeny, biogeography, and evolution of edaphic association in the European orophytes Sempervivum and Jovibarba (Crassulaceae). Int J Pl Sci. 2015;176:44–71.
Article
Google Scholar
Zhang L-B, Comes HP, Kadereit JW. Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Amer J Bot. 2001;88:2331–45.
Article
CAS
Google Scholar
Bellino A, Bellino L, Baldantoni D, Saracino A. Evolution, ecology and systematics of Soldanella (Primulaceae) in the southern Apennines (Italy). BMC Evol Biol. 2015;15:158.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meusel H, Mühlberg H. Unterfamilie Silenoideae (Lindl.) A.Br. In: Hegi G, editor. Illustrierte Flora von Mitteleuropa, vol. III/2. 2nd ed. Berlin, Hamburg: Parey; 1979. p. 947–1182.
Google Scholar
Aeschimann D, Lauber K, Moser DM, Theurillat J-P. Flora alpina, vol. 1-3. Bern: Haupt; 2004.
Google Scholar
Ronikier M, Cieślak E, Korbecka G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molec Ecol. 2008;17:1763–75.
Article
CAS
Google Scholar
Pachschwöll C, Escobar García P, Winkler M, Schneeweiss GM, Schönswetter P. Polyploidisation and geographic differentiation drive diversification in a European high mountain plant group (Doronicum clusii aggregate, Asteraceae). PLoS One. 2015;10(3):e0118197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pachschwöll C, Pușcaș M, Schönswetter P. Distribution of Doronicum clusii and D. stiriacum (Asteraceae) in the Alps and Carpathians. Biologia (Bratislava). 2011;66:977–87.
Article
Google Scholar
Puşcaş M, Choler P. A biogeographic delineation of the European alpine system based on a cluster analysis of Carex curvula-dominated grasslands. Flora. 2012;207:168–78.
Article
Google Scholar
Kropf M, Kadereit JW, Comes HP. Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Mol Ecol. 2003;12:931–49.
Article
CAS
PubMed
Google Scholar
Paun O, Schönswetter P, Winkler M, Tribsch A. Evolutionary history of the Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Molec Ecol. 2008;17:4263–75.
Article
CAS
Google Scholar
Alsos I, Alm T, Normand S, Brochmann C. Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Glob Ecol Biogeogr. 2009;18:223–39.
Article
Google Scholar
Ronikier M, Schneeweiss GM, Schönswetter P. The extreme disjunction between Beringia and Europe in Ranunculus glacialis s. l. (Ranunculaceae) does not coincide with the deepest genetic split – a story of the importance of temperate mountain ranges in arctic-alpine phylogeography. Molec Ecol. 2012;21:5561–78.
Article
CAS
Google Scholar
Schmickl R, Paule J, Klein J, Marhold K, Koch MA. The evolutionary history of the Arabidopsis arenosa complex: diverse tetraploids mask the Western Carpathian center of species and genetic diversity. PLoS One. 2012;7(8):e42691.
Article
CAS
PubMed
PubMed Central
Google Scholar
György Z, Vouillamoz J, Höhn M. Microsatellite markers reveal common east alpine-Carpathian gene pool for the arctic-alpine Rhodiola rosea (Crassulaceae). Pl Syst Evol. 2016;302:721–30.
Article
Google Scholar
Cieślak E, Ronikier M, Schönswetter P. Phylogenetic analysis confirms the status of Saxifraga wahlenbergii Ball (Saxifragaceae) as a distinct endemic of the Western Carpathians. Acta Biol Cracov, Ser. Bot. 2013;55:40.
Google Scholar
Tkach N, Röser M, Miehe G, Muellner-Riehl AN, Ebersbach J, Favre A, Hoffmann MH. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon. 2015;64:1159–87.
Article
Google Scholar
Ebersbach J, Muellner-Riehl AN, Michalak I, Tkach N, Hoffmann MH, Röser M, Sun H, Favre A. In and out of the Qinghai-Tibet plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J Biogeogr. 2017;44:900–10.
Article
Google Scholar
Gao Q-B, Li Y, Gengji Z-M, Gornall RJ, Wang J-L, Liu H-R, Jia L-K, Chen S-L. Population genetic differentiation and taxonomic suggestion of three closely related species of Saxifraga (Saxifragaceae) from southern Tibet and the Hengduan Mountains. Frontiers Pl Sci. 2017;8:1325.
Article
Google Scholar
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.
Google Scholar
Taberlet P, Gielly L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol. 1991;17:1105–9.
Article
CAS
Google Scholar
Shaw J, Lickey EB, Schilling EE, Small RL. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot. 2007;94:275–88.
Article
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. ClustalW and ClustalX version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
Article
PubMed
PubMed Central
Google Scholar
Suchan T, Talavera G, Sáez L, Ronikier M, Vila R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol Ecol Resour. 2018. https://doi.org/10.1101/312363.
Chen S, Yao H, Han J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5:e8613.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fazekas AJ, Kuzmina ML, Newmaster SG, Hollingsworth PM. DNA barcoding methods for land plants. In: Kress W, Erickson D, editors. DNA barcodes. Methods in molecular biology (methods and protocols), vol. 858. Totowa: Humana Press; 2012. p. 223–52.
Chapter
Google Scholar
Keller A, Danner N, Grimmer G, Ankenbrand M, von der Ohe K, von der Ohe W, et al. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2015;17:558–66.
Article
CAS
PubMed
Google Scholar
Sickel W, Ankenbrand MJ, Grimmer G, Holzschuh A, Härtel S, Lanzen J, Steffan-Dewenter I, Keller A. Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecol. 2015;15(1):20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fierer N, Hamady M, Lauber CL, Knight R. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci U S A. 2008;105(46):17994–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30(5):614–20.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
Article
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
CAS
PubMed
PubMed Central
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, Louisiana, 14 Nov. 2010. Piscataway: IEEE; 2010. p. 45–52.
Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogeny. Ver. 3.1.2. 2006. http://mrbayes.csit.fsu.edu. Accessed 20 Mar 2018.
Swofford DL. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer: Sunderland, Massachusetts; 2002.
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molec Biol Evol. 2012;29:1969–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. 2014. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 26 Jun 2018.
Brochmann C, Nilsson T, Gabrielsen TM. A classic example of postglacial allopolyploid speciation re-examined using RAPD markers and nucleotide sequences: Saxifraga osloensis (Saxifragaceae). Symb Bot Upsal. 1996;31:75–89.
Google Scholar
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I. The chromosome counts database (CCDB) – a community resource of plant chromosome numbers. New Phytol. 2015;206:19–26.
Article
PubMed
Google Scholar
Zhmylev PY. Genus Saxifraga L. (Saxifragaceae): biomorphology, systematics and evolution of the life forms. Dissertation. Moscow: Moscow State University; 2004.
Google Scholar
Pawłowska S. O kilku skalnicach karpackich i bałkańskich. De nonnulIis Saxifragis carpaticis et balcanicis. Acta Soc Bot Pol. 1953;22:225–44.
Article
Google Scholar
Gornall RJ. Trichome anatomy and taxonomy of Saxifraga (Saxifragaceae). Nordic J Bot. 1986;6:257–75.
Article
Google Scholar
Engler HGA. Monographie der Gattung Saxifraga L, mit besonderer Berücksichtigung der geographischen Verhältnisse. J.U. Kern: Breslau; 1872.
Google Scholar
Engler HGA, Irmscher E. Saxifragaceae - Saxifraga I. In: Engler HGA, editor. Pflanzenreich, vol. 67 (IV, 117), Saxifragaceae - Saxifraga. Leipzig: Engelmann; 1916. p. 1–448.
Ball J. Adnotatio in speciem novam generis Saxifraga. Bot Zeitung (Berlin). 1846;4:401–3.
Google Scholar
Winterfeld G, Schneider J, Röser M. Allopolyploid origin of Mediterranean species in Helictotrichon (Poaceae) and its consequences for karyotype repatterning and homogenisation of rDNA repeat units. Syst Biodivers. 2009;7:277–95.
Article
Google Scholar
Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A. The evolution of the hexaploid grass Zingeria kochii (Mez) Tzvel. (2n = 12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol. 2010;56:146–55.
Article
PubMed
Google Scholar
Nieto Feliner G, Rosselló JA. Concerted evolution of multigene families and homeologous recombination. In: Wendel JF, editor. Plant genome diversity, vol. 1. Wien: Springer; 2012. p. 171–19.
Chapter
Google Scholar
Winterfeld G, Schneider J, Perner K, Röser M. Origin of highly polyploids: different pathways of auto- and allopolyploidy in 12–18x species of Avenula (Poaceae). Int J Pl Sci. 2012;173:1–14.
Article
Google Scholar
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res. 2013;140:137–50.
Article
CAS
PubMed
Google Scholar
Wölk A, Winterfeld G, Röser M. Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics of Helictotrichon (Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. Syst Biodivers. 2015;13:326–45.
Article
Google Scholar
Brochmann C, Xiang Q-Y, Brunsfeld SJ, Soltis DE, Soltis PS. Molecular evidence for polyploid origins in Saxifraga (Saxifragaceae): the narrow arctic endemic S. svalbardensis and its widespread allies. Amer J Bot. 1998;85:135–43.
Article
CAS
Google Scholar
Marks L, Dzierżek J, Janiszewski R, Kaczorowski J, Lindner L, Majecka A, Makos M, Szymanek M, Tołoczko-Pasek A, Woronko B. Quaternary stratigraphy and palaeogeography of Poland. Acta Geol Pol. 2016;66:403–27.
Google Scholar
Zając A, Zając M, editors. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution atlas of vascular plants in Poland. 2001. https://atlas-roslin.pl/. Accessed 2 Nov 2017.
Jasičová M, Futák J. Saxifraga L. In: Bertová L, editor. Flóra slovenska, vol. IV/2. Bratislava: Veda; 1985. p. 233–75.
Google Scholar
Folk RA, Soltis PS, Soltis DE, Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life. Amer J Bot. 2018;105(3):364–75.
Article
Google Scholar
Mirek Z, Piękoś-Mirkowa H. Plant cover of the polish Tatra Mountains (S Poland). Veröff Geobot Inst ETH, Stiftung Rübel, Zürich. 1992;707:177–99.
Google Scholar
Mai DH. Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Gustav Fischer Verlag: Jena, Stuttgart, New York; 1995.
Google Scholar
Milne RI, Abbott RJ. The origin and evolution of tertiary relict floras. Advances Bot Res. 2002;38:281–314.
Article
Google Scholar
Lendvay B, Kadereit JW, Westberg E, Cornejo C, Pedryc A, Höhn M. Phylogeography of Syringa josikaea (Oleaceae): Early Pleistocene divergence from east Asian relatives and survival in small populations in the Carpathians. Biol J Linn Soc. 2016;119:689–703.
Article
Google Scholar
Puşcaş M, Choler P, Tribsch A, Gielly L, Rioux D, Gaudeul M, Taberlet P. Post-glacial history of the dominant alpine sedge Carex curvula in the European alpine system inferred from nuclear and chloroplast markers. Molec Ecol. 2008;17:2417–29.
Article
CAS
Google Scholar
Šrámková-Fuxová G, Záveská E, Kolář F, Lučanová M, Španiel S, Marhold K. Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the northern hemisphere disjunction. Bot J Linn Soc. 2017;185:321–42.
Article
Google Scholar
Pfiffner OA. Geologie der Alpen. 3rd ed. Bern: Haupt; 2015.
Book
Google Scholar
Tribsch A, Schönswetter P. Patterns of endemism and comparative phylogeography confirm palaeoenvironmental evidence for Pleistocene refugia in the eastern Alps. Taxon. 2003;52:477–97.
Article
Google Scholar
Tribsch A, Schönswetter P, Stuessy TF. Saponaria pumila (Caryophyllaceae) and the ice age in the European Alps. Amer J Bot. 2002;89:2024–33.
Article
Google Scholar
Schönswetter P, Tribsch A, Schneeweiss GM, Niklfeld H. Disjunction in relict alpine plants: phylogeography of Androsace brevis and A. wulfeniana (Primulaceae). Bot J Linn Soc. 2003;141:437–46.
Article
Google Scholar
Thiers B. Index Herbariorum: a global directory of public herbaria and associated staff. New York botanical Garden’s virtual herbarium. Continuously updated. http://sweetgum.nybg.org/science/ih/.