Klein J. The natural history of the major histocompatibility complex. New York: John Wiley & Sons; 1986.
Google Scholar
O'Connor EA, Strandh M, Hasselquist D, Nilsson JÅ, Westerdahl H. The evolution of highly variable immunity genes across a passerine bird radiation. Mol Ecol. 2016;25:977–89.
Article
CAS
Google Scholar
Bollmer JL, Dunn PO, Whittingham LA, Wimpee C. Extensive MHC class II B gene duplication in a passerine, the common yellowthroat. J Hered. 2010;101:448–60.
Article
CAS
Google Scholar
Kaufman J, Milne S, Göbel TW, Walker BA, Jacob JP, Auffray C, et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401:923–5.
Article
CAS
Google Scholar
Bollmer JL, Dunn PO, Freeman-Gallant CR, Whittingham LA. Social and extra-pair mating in relation to major histocompatibility complex variation in common yellowthroat. Proc R Soc B. 2012;279:4478–785.
Article
Google Scholar
Sepil I, Moghadam HK, Hucard E, Sheldon BC. Characterization and 454 pyrosequencing of major histocompatibility complex class I genes in the great tit reveal complexity in a passerine system. BMC Evol Biol. 2012;12:68.
Article
CAS
Google Scholar
Biedrzycka A, O’Connor E, Sebastian A, Migalska M, Radwan J, Zając T, et al. Extreme MHC class I diversity in the sedge warbler (Acrocephalus schoenobaenus); selection patterns and allelic divergence suggest that different genes have different functions. BMC Evol Biol. 2017;17:159.
Article
Google Scholar
Spurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B. 2010;277:979–88.
Article
CAS
Google Scholar
Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988;335:167–70.
Article
CAS
Google Scholar
Takahata N, Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics. 1990;124:967–78.
CAS
PubMed
PubMed Central
Google Scholar
Hedrick PW. Pathogen resistance and genetic variation at MHC loci. Evolution. 2002;56:1902–8.
Article
Google Scholar
Těšický M, Vinkler M. Trans-species polymorphism in immune genes: general pattern or MHC-restricted phenomenon? J Immunol Res. 2015;2015:838035.
Article
Google Scholar
Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557.
Article
CAS
Google Scholar
Benskin CMH, Wilson K, Jones K, Hartley IR. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev. 2009;84:349–73.
Article
Google Scholar
Minias P, Whittingham LA, Dunn PO. Coloniality and migration are related to selection on MHC genes in birds. Evolution. 2017;71:432–41.
Article
CAS
Google Scholar
Minias P, Pikus E, Whittingham LA, Dunn PO. A global analysis of selection at the avian MHC. Evolution. 2018;72:1278–93.
Article
Google Scholar
Morand S, Poulin R. Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol. 1998;12:717–27.
Article
Google Scholar
Bush AO, Aho JM, Kenndy CR. Ecological versus phylogenetic determinants of helminth parasite community richness. Evol Ecol. 1990;4:1–20.
Article
Google Scholar
Lutz HL, Hochachka WM, Engel JI, Bell JA, Tkach VV, Bates JM, et al. Parasite prevalence corresponds to host life history in a diverse assemblage of Afrotropical birds and haemosporidian parasites. PLoS One. 2015;10:e0121254.
Article
Google Scholar
Strandh M, Lannefors M, Bonadonna F, Westerdahl H. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariformes). Immunogenetics. 2011;63:653–66.
Article
CAS
Google Scholar
Gillingham MA, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol. 2016;29:438–54.
Article
CAS
Google Scholar
Minias P, Bateson Z, Whittingham LA, Johnson JA, Oyler-McCance S, Dunn PO. Contrasting evolutionary histories of MHC class I and class II in grouse – effects of selection and gene conversion. Heredity. 2016;116:466–76.
Article
CAS
Google Scholar
Alcaide M, Edwards SV, Negro JJ. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey. J Mol Evol. 2007;65:541–54.
Article
CAS
Google Scholar
Alcaide M, Edwards SV, Cadahía L, Negro JJ. MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conserv Genet. 2009;10:1349.
Article
CAS
Google Scholar
Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL. Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol. 2008;17:2652–65.
Article
CAS
Google Scholar
Rodríguez A, Alcaide M, Negro JJ, Pilard P. Using major histocompatibility complex markers to assign the geographic origin of migratory birds: examples from the threatened lesser kestrel. Anim Conserv. 2011;14:306–13.
Article
Google Scholar
Alcaide M, Rodríguez A, Negro JJ, Serrano D. Male transmission ratio distortion supports MHC-linked cryptic female choice in the lesser kestrel (Aves: Falconidae). Behav Ecol Sociobiol. 2012;66:1467–73.
Google Scholar
Gangoso L, Alcaide M, Grande JM, Muñoz J, Talbot SL, Sonsthagen SA, et al. Colonizing the world in spite of reduced MHC variation. J Evol Biol. 2012;25:1438–47.
Article
CAS
Google Scholar
Alcaide M, López L, Tanferna A, Blas J, Sergio F, Hiraldo F. Simultaneous analysis of multiple PCR amplicons enhances capillary SSCP discrimination of MHC alleles. Electrophoresis. 2010;31:1353–6.
Article
CAS
Google Scholar
Agudo R, Alcaide M, Rico C, Lemus JA, Blanco G, Hiraldo F, Donázar JA. Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection. Mol Ecol. 2011;20:2329–40.
Article
Google Scholar
Bollmer JL, Hull JM, Ernest HB, Sarasola JH, Parker PG. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic. BMC Evol Biol. 2011;11:143.
Article
CAS
Google Scholar
del Hoyo J, Elliott A, Sargatal J. (eds.) Handbook of the birds of the world. Vol. 2. New World Vultures to Guineafowl. Lynx Edicions, Barcelona; 1994.
Google Scholar
BirdLife International. IUCN Red List for birds; 2018. Downloaded from http://www.birdlife.org on 06/07/2018.
Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, et al. Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett. 2006;2:316–9.
Article
Google Scholar
Nemesházi E, Kövér S, Zachos FE, Horváth Z, Tihanyi G, Mórocz A, et al. Natural and anthropogenic influences on the population structure of white-tailed eagles in the Carpathian Basin and Central Europe. J Avian Biol. 2016;47:795–805.
Article
Google Scholar
Honnen AC, Hailer F, Kenntner N, Literak I, Dubska L, Zachos FE. Mitochondrial DNA and nuclear microsatellites reveal high diversity and genetic structure in an avian top predator, the white-tailed sea eagle, in Central Europe. Biol J Linn Soc. 2010;99:727–37.
Article
Google Scholar
Moon DA, Veniamin SM, Parks-Dely JA, Magor KE. The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J Immunol. 2005;175:6702–12.
Article
CAS
Google Scholar
Wang Y, Qiu M, Yang J, Zhao X, Wang Y, Zhu Q, Liu Y. Sequence variations of the MHC class I gene exon 2 and exon 3 between infected and uninfected chickens challenged with Marek’s disease virus. Infect Genet Evol. 2014;21:103–9.
Article
CAS
Google Scholar
Sebastian A, Herdegen M, Migalska M, Radwan J. AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data. Mol Ecol Res. 2016;16:498–510.
Article
CAS
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Article
CAS
Google Scholar
Biedrzycka A, Sebastian A, Migalska M, Westerdahl H, Radwan J. Testing genotyping strategies for ultra-deep sequencing of a co-amplifying gene family: MHC class I in a passerine bird. Mol Ecol Res. 2017;17:642–55.
Article
CAS
Google Scholar
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.
Article
CAS
Google Scholar
Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–26.
CAS
PubMed
Google Scholar
Kosakovsky Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–9.
Article
Google Scholar
Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010;26:2455–7.
Article
CAS
Google Scholar
Weaver S, Shank SD, Spielman SJ, Li M, Muse SV, Kosakovsky Pond SL. Datamonkey 2.0: a modern web application for characterizing selective and other evolutionary processes. Mol Biol Evol. 2018;35:773–7.
Article
CAS
Google Scholar
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013;30:1196–205.
Article
CAS
Google Scholar
Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–22.
Article
Google Scholar
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8:e1002764.
Article
CAS
Google Scholar
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. GARD: a genetic algorithm for recombination detection. Bioinformatics. 2006;22:3096–8.
Article
Google Scholar
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006;23:1891–901.
Article
Google Scholar
Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2·6 °A resolution. J Mol Biol. 1991;219:277–319.
Article
CAS
Google Scholar
Brown JH, Jardetzky T, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature. 1993;364:33–9.
Article
CAS
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.
Article
Google Scholar
Liu K, Linder R, Warnow T. RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One. 2011;6:e27731.
Article
CAS
Google Scholar
Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994;39:306–14.
Article
CAS
Google Scholar
Shimodaira H, Hasegawa M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:1114–6.
Article
CAS
Google Scholar
Burri R, Promerová M, Goebel J, Fumagalli L. PCR-based isolation of multigene families: lessons from the avian MHC class IIB. Mol Ecol Res. 2014;14:778–88.
Article
CAS
Google Scholar
Zhou X, Li C, Yi K, Liang H, Chen L, Sun Y, et al. Patterns of variation of the major histocompatibility complex class IIB loci in Chinese goose (Anser cygnoides). Immunogenetics. 2009;61:443–50.
Article
CAS
Google Scholar
Wang Z, Zhou X, Lin Q, Fang W, Chen X. Characterization, polymorphism and selection of major histocompatibility complex (MHC) DAB genes in vulnerable Chinese egret (Egretta eulophotes). PLoS One. 2013;8:e74185.
Article
CAS
Google Scholar
Kohyama TI, Omote K, Nishida C, Takenaka T, Saito K, Fujimoto S, Masuda R. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston’s fish owl. Zool Lett. 2015;1:13.
Article
Google Scholar
Burri R, Hirzel HN, Salamin N, Roulin A, Fumagalli L. Evolutionary patterns of MHC class II B in owls and their implications for the understanding of avian MHC evolution. Mol Biol Evol. 2008;25:1180–91.
Article
CAS
Google Scholar
Hale ML, Verduijn MH, Møller AP, Wolff K, Petrie M. Is the peacock’s train an honest signal of genetic quality at the major histocompatibility complex? J Evol Biol. 2009;22:1284–94.
Article
CAS
Google Scholar
Strand TM, Höglund J. Genotyping of black grouse MHC class II B using reference Strand-mediated conformational analysis (RSCA). BMC Res Notes. 2011;4:183.
Article
Google Scholar
Chen W, Bei Y, Li H. Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume’s pheasant, Syrmaticus humiae. PLoS One. 2015;10:e0116499.
Article
Google Scholar
Meyer-Lucht Y, Mulder KP, James MC, McMahon BJ, Buckley K, Piertney SB, Höglund J. Adaptive and neutral genetic differentiation among Scottish and endangered Irish red grouse (Lagopus lagopus scotica). Conserv Genet. 2016;17:615–30.
Article
Google Scholar
Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, et al. Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol. 2004;172:6751–63.
Article
CAS
Google Scholar
Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, et al. Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity. J Immunol. 2008;181:3393–9.
Article
CAS
Google Scholar
Miller HC, Lambert DM. Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol. 2004;13:3709–21.
Article
CAS
Google Scholar
Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J. Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecol Evol. 2012;2:341–53.
Article
Google Scholar
Eimes JA, Bollmer JL, Whittingham LA, Johnson JA, van Oosterhout C, Dunn PO. Rapid loss of MHC class II variation in a bottlenecked population is explained by drift and loss of copy number variation. J Evol Biol. 2011;24:1847–56.
Article
CAS
Google Scholar
Biedrzycka A, Radwan J. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus. Mol Ecol. 2008;17:4801–11.
Article
CAS
Google Scholar
Miller HC, Allendorf F, Daugherty CH. Genetic diversity and differentiation at MHC genes in island populations of tuatara (Sphenodon spp.). Mol Ecol. 2010;19:3894–908.
Article
Google Scholar
Ejsmond MJ, Radwan J. MHC diversity in bottlenecked populations: a simulation model. Conserv Genet. 2011;12:129–37.
Article
Google Scholar
Sutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol. 2011;20:4408–20.
Article
Google Scholar
Cloutier A, Mills JA, Baker AJ. Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci. Immunogenetics. 2011;63:377–94.
Article
CAS
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.
Article
CAS
Google Scholar
Eimes JA, Townsend AK, Sepil I, Nishiumi I, Satta Y. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism. PeerJ. 2015;3:e853.
Article
Google Scholar