Kopf RK, Finlayson CM, Humphries P, Sims NC, Hladyz S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. Bioscience. 2015;65:798–811.
Article
Google Scholar
Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, et al. Consequences of changing biodiversity. Nature. 2000;405:234–42.
Article
CAS
PubMed
Google Scholar
FAO. The State of World Fisheries and Aquaculture; 2016. p. 2016.
Google Scholar
de Graaf GJ, Garibaldi L. The value of African fisheries. FAO. Fish. Aquac. In: Circ; 2014.
Google Scholar
Ripple WJ, Wolf C, Galetti M, Newsome TM, Alamgir M, Crist E, et al. World scientists’ warning to humanity: a second notice. Bioscience. 2017;67:1026–8.
Article
Google Scholar
Cooke SJ, Allison EH, Beard TD, Arlinghaus R, Arthington AH, Bartley DM, et al. On the sustainability of inland fisheries: finding a future for the forgotten. Ambio. Springer Netherlands. 2016;45:753–64.
Google Scholar
Stephenson RL. Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units. Fish Res. 1999;43:247–9.
Article
Google Scholar
Hauser L, Carvalho GR. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 2008;9:333–62.
Article
Google Scholar
Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM. Ocean’s eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 2015;16:125–59.
Article
Google Scholar
Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 2009;10:361–95.
Article
Google Scholar
Guan W, Cao J, Chen Y, Cieri M, Quinn T. Impacts of population and fishery spatial structures on fishery stock assessment. Can J Fish Aquat Sci. 2013;70:1178–89.
Article
Google Scholar
Kerr LA, Hintzen NT, Cadrin SX, Clausen LW, Dickey-collas M, Goethel DR, et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J Mar Sci. 2016;74:1708–22.
Google Scholar
Salzburger W, Van Bocxlaer B, Cohen AS. Ecology and evolution of the African Great Lakes and their faunas. Annu Rev Ecol Evol Syst. 2014;45:519–45.
Article
Google Scholar
Huttula T. Flow, thermal regime and sediment transport studies in Lake Tanganyika. Huttula T, editor. Kuopio University Publications C. Natural and Environ Sci 73; 1997.
De Wever A, Muylaert K, Van Der Gucht K, Pirlot S, Cocquyt C, Descy J, et al. Bacterial community composition in Lake Tanganyika: vertical and horizontal heterogeneity. Appl Environ Microbiol. 2005;71:5029–37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Plisnier PD, Chitamwebwa D, Mwape L, Tshibangu K, Langenberg V, Coenen E. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia. 1999;407:45–58.
Article
CAS
Google Scholar
Danley PD, Husemann M, Ding B, DiPietro LM, Beverly EJ, Peppe DJ. The impact of the geologic history and paleoclimate on the diversification of east African cichlids. Int J Evol Biol. 2012;2012:1–20.
Article
Google Scholar
McGlue MM, Lezzar KE, Cohen AS, Russell JM, Tiercelin JJ, Felton AA, et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J Paleolimnol. 2008;40:635–53.
Article
Google Scholar
Van der Knaap M, Katonda KI, De Graaf GJ. Lake Tanganyika fisheries frame survey analysis: assessment of the options for management of the fisheries of Lake Tanganyika. Aquat Ecosyst Heal Manag. 2014;17:4–13.
Article
Google Scholar
Mölsä H, Reynolds JE, Coenen EJ, Lindqvist OV. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia. 1999;407:1–24.
Article
Google Scholar
Coulter GW. Lake Tanganyika and its life. In: British museum (natural history); 1991.
Google Scholar
Kimirei IA, Mgaya YD. Influence of environmental factors on seasonal changes in clupeid catches in the Kigoma area of Lake Tanganyika. African J Aquat Sci. 2007;32:291–8.
Article
Google Scholar
Plisnier PD, Mgana H, Kimirei I, Chande A, Makasa L, Chimanga J, et al. Limnological variability and pelagic fish abundance (Stolothrissa tanganicae and Lates stappersii) in Lake Tanganyika. Hydrobiologia. 2009;625:117–34.
Article
Google Scholar
Matthes H. Preliminary investigations into the biology of the Lake Tanganyika Clupeidae. Fish Res Bull. 1967;4:1965–6.
Google Scholar
Coulter G. Population changes within a group of fish species following their exploitation. J Fish Biol. 1970;2:329–53.
Article
Google Scholar
Roest FC. Stolothrissa tanganicae: population dynamics, biomass evolution and life history in the Burundi waters of Lake Tanganyika. UN, FAO, CIFA Tech Pap. 1977:42–63.
Mulimbwa N, Sarvala J, Raeymaekers JAM. Reproductive activities of two zooplanktivorous clupeid fish in relation to the seasonal abundance of copepod prey in the northern end of Lake Tanganyika. Belgian J Zool. 2014;144:77–92.
Google Scholar
Chapman DW. Van well P. growth and mortality of Stolothrissa tanganicae. Trans Am Fish Soc. 1978;107:523–7.
Article
Google Scholar
Ellis CMA. The size at maturity and breeding seasons of sardines in southern Lake Tanganyika. AfrJTropHydrobiolFish. 1971;1:59–66.
Google Scholar
Mgana HF, Herzig A, Mgaya YD. Diel vertical distribution and life history characteristics of Tropodiaptomus simplex and its importance in the diet of Stolothrissa tanganicae, Kigoma, Tanzania. Aquat Ecosyst Health Manag. 2014;17:14–24.
Article
Google Scholar
Coenen EJ, Nikomeze E. Lake Tanganyika, Burundi, results of the 1992–93 catch assessment surveys; 1994.
Google Scholar
Van Der Knaap M, Kamitenga DM, Many LN, Tambwe AE, De Graaf GJ. Lake Tanganyika fisheries in post-conflict Democratic Republic of Congo. Aquat Ecosyst Health Manag. 2014;17:34–40.
Article
Google Scholar
Fryer G. Conservation of the Great Lakes of East Africa: a lesson and a warning. Biol Conserv. 1972;4:256–62.
Article
Google Scholar
Britton AW, Day JJ, Doble CJ, Ngatunga BP, Kemp KM, Carbone C, et al. Terrestrial-focused protected areas are effective for conservation of freshwater fish diversity in Lake Tanganyika. Biol Conserv. 2017;212:120–9.
Article
Google Scholar
Vasconcellos M, Cochrane K. Overview of world status of data-limited fisheries : inferences from landings statistics. In: Kruse GH, Gallucci VF, Hay DE, Perry RI, Peterman RM, Shirley TC, et al., editors. Fish assess Manag data-limited situations. Anchorage: Alaska Sea Grant College Program University of Alaska Fairbanks Lowell; 2005. p. 1–20.
Google Scholar
Hutchings JA, Reynolds JD. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience. 2004;54:297-309.
Murphy GI. Vital statistics of the Pacific sardine (Sardinops Caerulea) and the population consequences. Ecology. 1967;48:731–6.
Article
PubMed
Google Scholar
Zwolinski JP, Emmett RL, Demer DA. Predicting habitat to optimize sampling of Pacific sardine (Sardinops sagax). ICES J Mar Sci. 2011;68:867–79.
Article
Google Scholar
Overholtz WJ. The Gulf of Maine - Georges Bank Atlantic herring (Clupea harengus): spatial pattern analysis of the collapse and recovery of a large marine fish complex. Fish Res. 2002;57:237–54.
Article
Google Scholar
Hess JE, Matala AP, Narum SR. Comparison of SNPs and microsatellites for fine-scale application of genetic stock identification of Chinook salmon in the Columbia River basin. Mol Ecol Resour. 2011;11:137–49.
Article
PubMed
Google Scholar
Cohen AS, Talbot MR, Awramik SM, Dettman DL, Abell P. Lake level and paleoenvironmental history of Lake Tanganyika, Africa, as inferred from late Holocene and modern stromatolites. Bull Geol Soc Am. 1997;109:444–60.
Article
CAS
Google Scholar
Mesnick SL, Taylor BL, Archer FI, Martien KK, Treviño SE, Hancock-Hanser BL, et al. Sperm whale population structure in the eastern and central North Pacific inferred by the use of single-nucleotide polymorphisms, microsatellites and mitochondrial DNA. Mol Ecol Resour. 2011;11:278–98.
Article
PubMed
Google Scholar
Puckett EE, Eggert LS. Comparison of SNP and microsatellite genotyping panels for spatial assignment of individuals to natal range: a case study using the American black bear (Ursus americanus). Biol Conserv. 2016;193:86–93.
Article
Google Scholar
Grant WS, Bowen BW. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for coservation. J Hered. 1998;89:415–26.
Article
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.
CAS
PubMed
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bandelt H-J, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol. 1999;16:37–48.
Article
CAS
Google Scholar
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6.
Article
Google Scholar
Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA. diveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol. 2013;4:782–8.
Article
Google Scholar
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302.
Article
CAS
PubMed
Google Scholar
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3:1–7.
Article
CAS
Google Scholar
Etter PD, Bassham S, Hohenlohe PA, Johnson EA, Cresko WA. SNP discovery and genotyping for evolutionary genetics using RAD sequencing. Methods Mol Biol. 2011;772:157–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barrio AM, Lamichhaney S, Fan G, Rafati N, Pettersson M, Zhang H, et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. elife. 2016;5:1–32.
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data; 2010.
Google Scholar
Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH, De Koning D-J. Stacks: building and genotyping loci de novo from short-read sequences. G3journall. 2011;1:171–82.
CAS
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22:3124–40.
Article
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.
Article
CAS
PubMed
Google Scholar
Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:1–15.
Article
Google Scholar
Malinsky M, Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: population inference from RADseq data. Mol Biol Evol. 2018;35:1284–90.
Article
PubMed
PubMed Central
Google Scholar
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLOS Genet Public Library of Science. 2012;8:1–16.
Google Scholar
Peakall R, Ruibal M, Lindenmayer DB, Url S. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution (N Y). 2003;57:1182–95.
Google Scholar
Vekemans X, Hardy OJ. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol. 2004;13:921–35.
Article
CAS
PubMed
Google Scholar
Peakall R, Smouse PE. GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.
Article
Google Scholar
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–93.
Article
PubMed
PubMed Central
Google Scholar
Narum SR, Hess JE. Comparison of FST outlier tests for SNP loci under selection. Mol Ecol Resour. 2011;11:184–94.
Article
PubMed
Google Scholar
Pérez-Figueroa A, García-Pereira MJ, Saura M, Rolán-Alvarez E, Caballero A. Comparing three different methods to detect selective loci using dominant markers. J Evol Biol. 2010;23:2267–76.
Article
PubMed
Google Scholar
Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100:9440–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6:925–9.
Article
Google Scholar
Lamichhaney S, Fuentes-pardo AP, Rafati N, Ryman N, Mccracken GR. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci. 2017;114:3452–61.
Article
CAS
Google Scholar
van Zwieten PAM, Roest FC, Machiels MAM, van Densen WLT. Effects of inter-annual variability , seasonality and persistence on the perception of long-term trends in catch rates of the industrial pelagic purse-seine fishery of northern Lake Tanganyika (Burundi). Fish Res. 2002;54:329–48.
Article
Google Scholar
Phiri H, Shirakihara K. Distribution and seasonal movement of pelagic fish in southern Lake Tanganyika. Fish Res. 1999;41:63–71.
Article
Google Scholar
Sinclair MM, IIles TD. Population regulation and speciation in the oceans. J du Cons Int Explor la Mer. 1989;45:165–75.
Article
Google Scholar
Verheyen E, Rüber L, Snoeks J, Meyer A. Evolution on islands - Mitochondrial phylogeography of rock-dwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philos Trans R Soc London Ser B Biol Sci. 1996;351:797 LP–805.
Article
Google Scholar
Koblmüller S, Salzburger W, Obermüller B, Eigner E, Sturmbauer C, Sefc KM. Separated by sand, fused by dropping water: habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Mol Ecol. 2011;20:2272–90.
Sturmbauer C, Baric S, Salzburger W, Rüber L, Verheyen E. Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol. 2001;18:144–54.
Article
CAS
PubMed
Google Scholar
Koblmüller S, Odhiambo EA, Sinyinza D, Sturmbauer C, Sefc KM. Big fish, little divergence: phylogeography of Lake Tanganyika’s giant cichlid, Boulengerochromis microlepis. Hydrobiologia. 2015;748:29–38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koblmüller S, Zangl L, Börger C, Daill D, Vanhove MPM, Sturmbauer C, et al. Only true pelagics mix: comparative phylogeography of Deepwater bathybatine cichlids from Lake Tanganyika. Hydrobiologia. 2018;3:1-11.
Whitehead PJP. FAO Species catalogue: Vol. 7 Clupeoid fishes of the world. FAO fish. synopsis. 1985.
Thompson AB. Simulation of reproductive rate, prey selection and the survival of pelagic fish of the African Great Lakes. Hydrobiologia. 1999;407:207–18.
Article
Google Scholar
Mulimbwa N, Shirakihara K. Growth, recruitment and reproduction of sardines (Stolothrissa tanganicae and Limnothrissa miodon) in northwester Lake Tanganyika. Tropics. 1994;4:57–67.
Article
Google Scholar
Kinsey ST, Orsoy T, Bert TM, Mahmoudi B. Population structure of the Spanish sardine Sardinella aurita: natural morphological variation in a genetically homogeneous population. Mar Biol. 1994;118:309–17.
Article
Google Scholar
García-Rodríguez FJ, García-Gasca SA, La C-AJD, Cota-Gómez VM. A study of the population structure of the Pacific sardine Sardinops sagax (Jenyns, 1842) in Mexico based on morphometric and genetic analyses. Fish Res. 2011;107:169–76.
Article
Google Scholar
Sebastian W, Sukumaran S, Zacharia PU, Gopalakrishnan A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conserv Genet Springer Netherlands. 2017;18:951–64.
Article
CAS
Google Scholar
Atarhouch T, Rami M, Naciri M, Dakkak A. Genetic population structure of sardine (Sardina pilchardus) off Morocco detected with intron polymorphism (EPIC-PCR). Mar Biol. 2007;150:521–8.
Article
CAS
Google Scholar
Gonzalez EG, Zardoya R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol Biol. 2007;7:197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden R, et al. Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol. 2012;21:3686–703.
Article
CAS
PubMed
Google Scholar
Corander J, Majander KK, Cheng L, Merilä J. High degree of cryptic population differentiation in the Baltic Sea herring Clupea harengus. Mol Ecol. 2013;22:2931–40.
Article
CAS
PubMed
Google Scholar
Mulimbwa N, Sarvala J, Micha J-C. The larval fishery on Limnothrissa miodon in the Congolese waters of Lake Tanganyika: impact on exploitable biomass and the value of the fishery. Fish Manag Ecol. 2018:1-7.
McLean KA, Byanaku A, Kubikonse A, Tshowe V, Katensi S, Lehman AG. Fishing with bed nets on Lake Tanganyika: a randomized survey. Malar J. 2014;13:395.
Article
PubMed
PubMed Central
Google Scholar