Coyne JA, Orr HA. Speciation. Sunderland, MA: Sinauer; 2004.
Google Scholar
Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst. 1985;16:113–48.
Article
Google Scholar
Searle JB. Chromosomal hybrid zones in eutherian mammals. In: Harrison RG, editor. Hybrid zones and the evolutionary process. New York: Oxford University Press; 1993. p. 309–53.
Google Scholar
White MJD. Modes of speciation. San Francisco: Freeman; 1978.
King M. Species evolution: the role of chromosome change. New York: Cambridge University Press; 1993.
Google Scholar
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16:351–8.
Article
Google Scholar
Fishman L, Stathos A, Beardsley P, Williams C, Hill J. Chromosomal rearrangements and the genetics of reproductive barriers in Mimulus (monkey flowers). Evolution. 2013;67:2547–60.
Article
Google Scholar
Qumsiyeh MB. Evolution of number and morphology of mammalian chromosomes. J Hered. 1994;85:455–65.
Article
CAS
Google Scholar
Piálek J, Hauffe HC, Searle JB. Chromosomal variation in the house mouse. Biol J Linn Soc. 2005;84:535–63.
Article
Google Scholar
Hauffe HC, Giménez MD, Searle JB. Chromosomal hybrid zones in the house mouse. In: Macholán M, Baird SJE, Munclinger P, Piálek J, editors. Evolution of the house mouse. Cambridge: Cambridge University Press; 2012. p. 407–530.
Chapter
Google Scholar
Close RL, Bell JN, Dollin AE, Harding HR. Spermatogenesis and synaptonemal complexes of hybrid Petrogale (Marsupialia). J Hered. 1996;87:96–107.
Article
CAS
Google Scholar
Phifer-Rixey M, Nachman MW. Insights into mammalian biology from the wild house mouse Mus musculus. elife. 2015;4:e05959.
Article
Google Scholar
Chatti N, Britton-Davidian J, Catalan J, Auffray J-C, Saïd K. Reproductive trait divergence and hybrid fertility patterns between chromosomal races of the house mouse in Tunisia: analysis of wild and laboratory-bred males and females. Biol J Linn Soc. 2005;84:407–16.
Article
Google Scholar
Castiglia R, Capanna E. Contact zone between chromosomal races of Mus musculus domesticus. 2. Fertility and segregation in laboratory-reared and wild mice heterozygous for multiple Robertsonian rearrangements. Heredity. 2000;85:147–56.
Article
Google Scholar
Capanna E, Gropp A, Winking H, Noack G, Civitelli M-V. Robertsonian metacentrics in the mouse. Chromosoma. 1976;58:341–53.
Article
CAS
Google Scholar
Malorni W, Capanna E, Cristaldi M, De Martino C. Changes of seminiferous epithelium in hybrids of mice carrying Robertsonian karyotype. Arch Androl. 1982;9:333–41.
Article
CAS
Google Scholar
Saïd K, Sâad A, Auffray J-C, Britton-Davidian J. Fertility estimates in the Tunisian all-acrocentric and Robertsonian populations of the house mouse and their chromosomal hybrids. Heredity. 1993;71:532–8.
Article
Google Scholar
Gropp A, Winking H. Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. Symp Zool Soc Lond. 1981;47:141–81.
Google Scholar
Garagna S, Redi C, Zuccotti M, Britton-Davidian J, Winking H. Kinetics of oogenesis in mice heterozygous for Robertsonian translocations. Differentiation. 1990;42:167–71.
Article
CAS
Google Scholar
Merico V, Pigozzi MI, Esposito A, Merani MS, Garagna S. Meiotic recombination and spermatogenic impairment in Mus musculus domesticus carrying multiple simple Robertsonian translocations. Cytogenet Genome Res. 2003;103:321–9.
Article
CAS
Google Scholar
Nunes AC, Catalan J, Lopez J, Ramalhinho MG, Mathias ML, Britton Davidian J. Fertility assessment in hybrids between monobrachially homologous Rb races of the house mouse from the island of Madeira: implications for modes of chromosomal evolution. Heredity. 2011;106:348–56.
Article
CAS
Google Scholar
Hauffe HC, Searle JB. Chromosomal heterozygosity and fertility in house mice (Mus musculus domesticus) from northern Italy. Genetics. 1998;150:1143–54.
CAS
PubMed
PubMed Central
Google Scholar
Redi CA, Garagna S, Hilscher B, Winking H. The effects of some Robertsonian chromosome combinations on the seminiferous epithelium of the mouse. J Embryol Exp Morphol. 1985;85:1–19.
CAS
PubMed
Google Scholar
Britton-Davidian J, Sonjaya H, Catalan J, Cattaneo-Berrebi G. Robertsonian heterozygosity in wild mice: fertility and transmission rates in Rb(16.17) translocation heterozygotes. Genetica. 1990;80:171–4.
Article
CAS
Google Scholar
Smadja C, Catalan J, Ganem G. Strong premating divergence in a unimodal hybrid zone between two subspecies of the house mouse. J Evol Biol. 2004;17:165–76.
Article
CAS
Google Scholar
Bímová B, Albrecht T, Macholán M, Piálek J. Signalling components of the house mouse mate recognition system. Behav Process. 2009;80:20–7.
Article
Google Scholar
Hübner, RKP. Chromosomal and biochemical variation in wild mice from Switzerland: relevance for models of chromosomal evolution in European house mice. PhD thesis. Oxford: University of Oxford; 1992.
König B, Lindholm AK. The complex social environment of female house mice (Mus domesticus). In: Macholán M, Baird SJE, Munclinger P, Pialek J, editors. Evolution of the house mouse. Cambridge: Cambridge University Press; 2012. p. 114–34.
Chapter
Google Scholar
Ford CE. The use of chromosome markers. In: Micklem HS, Loutit JF, editors. Tissue grafting and radiation. New York: Academic Press; 1966. p. 197–206.
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. https://www.R-project.org/
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Lenth RV. Least-squares means: the R package lsmeans. J Stat Softw. 2016;69:1–33.
Article
Google Scholar
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest: tests in linear mixed effects models. R package version. 2015;2:–33 https://CRAN.R-project.org/package=lmerTest.
Bulatova NS, Searle JB, Nadjafova RS, Pavlova SV, Bystrakova NV. Field protocols for the genomic era. Comp Cytogenet. 2009;3:57–62.
Article
Google Scholar
Adamczewska-Andrzejewska KA. Estimations of young born on the basis of placental scars count in the laboratory mouse. Acta Theriol. 1969;14:263–71.
Article
Google Scholar
Krackow S. Sex-specific embryonic mortality during concurrent pregnancy and lactation in house mice. J Exp Zool. 1990;256:106–12.
Article
CAS
Google Scholar
Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer; 2009. http://ggplot2.org
Ryan KK, Altmann J. Selection for male choice based primarily on mate compatibility in the oldfield mouse, Peromyscus polionotus rhoadsi. Behav Ecol Sociobiol. 2001;50:436–40.
Article
Google Scholar
Firman R. Female social preference for males that have evolved via monogamy: evidence of a trade-off between pre- and post-copulatory sexually selected traits? Biol Lett. 2014;10:20140659.
Article
Google Scholar
Lopes PC, König B. Choosing a healthy mate: sexually attractive traits as reliable indicators of current disease status in house mice. Anim Behav. 2016;111:119–26.
Article
Google Scholar
Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images. PLoS One. 2012;7:e35538.
Article
CAS
Google Scholar
Friard O, Gamba M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol. 2016;7:1325–30.
Article
Google Scholar
Drickamer LC, Gowaty PA, Holmes CM. Free female mate choice in house mice affects reproductive success and offspring viability and performance. Anim Behav. 2000;59:371–8.
Article
CAS
Google Scholar
Manser A, König B, Lindholm AK. Female house mice avoid fertilization by t haplotype incompatible males in a mate choice experiment. J Evol Biol. 2015;28:54–64.
Article
CAS
Google Scholar
Davison AC, Hinkley DV. Bootstrap methods and their applications. Cambridge: Cambridge University Press; 1997.
Book
Google Scholar
Canty A, Ripley B. Boot: Bootstrap R (S-plus) functions. R package version. 2017;1:3–20.
Google Scholar
Flachs P, Bhattacharyya T, Mihola O, Piálek J, Forejt J, Trachtulec Z. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids. PLoS One. 2014;9:e95806.
Article
Google Scholar
Harris MJ, Wallace ME, Evans EP. Aneuploidy in the embryonic progeny of females heterozygous for the Robertsonian chromosome (9.12) in genetically wild Peru-Coppock mice (Mus musculus). J Reprod Fertil. 1986;76:193–203.
Article
CAS
Google Scholar
Epstein C. Mouse monosomies and trisomies as experimental systems for studying mammalian aneuploidy. Trends Genet. 1985;1:129–34.
Article
Google Scholar
Magnuson T, Debrot S, Dimpfl J, Zweig A, Zamora T, Epstein C. The early lethality of autosomal monosomy in the mouse. J Exp Zool. 1985;236:353–60.
Article
CAS
Google Scholar
Winking H, Dulíc B, Bulfield G. Robertsonian karyotype variation in the European house mouse, Mus musculus: survey of present knowledge and new observations. Z Säugetierkd. 1988;53:148–61.
Google Scholar
Gropp A, Winking H, Redi C. Consequences of Robertsonian heterozygosity: segregational impairment of fertility versus male-limited sterility. In: Crosignani PG, Rubin BL, editors. Genetic control of gamete production and function. Orlando: Grune & Stratton; 1982. p. 115–34.
Google Scholar
Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. J Genet. 1922;12:101–9.
Article
Google Scholar
Hunt P, Hassold T. Sex matters in meiosis. Science. 2002;296:2181–3.
Article
CAS
Google Scholar
Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 2013;14:794.
Article
CAS
Google Scholar
Castiglia R, Capanna E. Chiasma repatterning across a chromosomal hybrid zone between chromosomal races of Mus musculus domesticus. Genetica. 2002;114:35–40.
Article
Google Scholar
Dumas D, Catalan J, Britton-Davidian J. Reduced recombination patterns in Robertsonian hybrids between chromosomal races of the house mouse: chiasma analyses. Heredity. 2015;114:56–64.
Article
CAS
Google Scholar
Bidau CJ, Giménez MD, Palmer CL, Searle JB. The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. Heredity. 2001;87:305–13.
Article
CAS
Google Scholar
Dougherty L, Shuker D. The effect of experimental design on the measurement of mate choice: a meta-analysis. Behav Ecol. 2015;26:311–9.
Article
Google Scholar
Nunes AC, Mathias ML, Ganem G. Odor preference in house mice: influences of habitat heterogeneity and chromosomal incompatibility. Behav Ecol. 2009;20:1252–61.
Article
Google Scholar
Capanna E, Corti M, Mainardi D, Parmigiani S, Brain PF. Karyotype and intermale aggression in wild house mice: ecology and speciation. Behav Genet. 1984;14:195–208.
Article
CAS
Google Scholar
Ganem G, Searle JB. Behavioural discrimination among chromosomal races of the house mouse (Mus musculus domesticus). J Evol Biol. 1996;9:817–30.
Article
Google Scholar
Carpineti M, Castiglia R. Analysis of behavioural discrimination mechanisms in a contact zone between two metacentric races of the house mouse, Mus musculus domesticus, in Central Italy. Rend Fis. 2004;15:31.
Article
Google Scholar
Gropp A, Winking H, Zech L, Müller H. Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma. 1972;39:265–88.
Article
CAS
Google Scholar