Ruiz-Trillo I, Burger G, Holland PWH, King N, Lang BF, Roger AJ, et al. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 2007;23:113–8.
Article
CAS
Google Scholar
Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol. 2012;13:183–94.
Article
CAS
Google Scholar
Spiliotis ET, Gladfelter AS. Spatial guidance of cell asymmetry: Septin GTPases show the way. Traffic. 2012;13:195–203.
Article
CAS
Google Scholar
Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science. 2000;290:341–4.
Article
CAS
Google Scholar
Angelis D, Spiliotis ET. Septin mutations in human cancers. Front Cell Dev Biol. 2016;4.
Gladfelter AS. Guides to the final frontier of the cytoskeleton: septins in filamentous fungi. Curr Opin Microbiol. 2010;13:720–6.
Article
CAS
Google Scholar
Oh Y, Bi E. Septin structure and function in yeast and beyond. Trends Cell Biol. 2011;21:141–8.
Article
CAS
Google Scholar
Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS. Septin assemblies form by diffusion-driven annealing on membranes. Proc Natl Acad Sci. 2014;111:2146–51.
Article
CAS
Google Scholar
Kozubowski L, Heitman J. Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol. 2010;75:658–75.
Article
CAS
Google Scholar
Momany M, Talbot NJ. Septins focus cellular growth for host infection by pathogenic Fungi. Front Cell Dev Biol. 2017;5:33.
Article
Google Scholar
Bertin A, McMurray MA, Thai L, Garcia G, Votin V, Grob P, et al. Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization. J Mol Biol. 2010;404:711–31.
Article
CAS
Google Scholar
Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, et al. Structural insight into filament formation by mammalian septins. Nature. 2007;449:311–5.
Article
CAS
Google Scholar
Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A. GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci U S A. 2009;106:16592–7.
Article
CAS
Google Scholar
Weirich CS, Erzberger JP, Barral Y. The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol. 2008;9:478–89.
Article
CAS
Google Scholar
Pan F, Malmberg RL, Momany M. Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol. 2007;7:103.
Article
CAS
Google Scholar
DeMay BS, Bai X, Howard L, Occhipinti P, Meseroll RA, Spiliotis ET, et al. Septin filaments exhibit a dynamic, paired organization that is conserved from yeast to mammals. J Cell Biol. 2011;193:1065–81.
Article
CAS
Google Scholar
Garcia G, Bertin A, Li Z, Song Y, McMurray MA, Thorner J, et al. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. J Cell Biol. 2011;195:993–1004.
Article
CAS
Google Scholar
Hernández-Rodríguez Y, Masuo S, Johnson D, Orlando R, Smith A, Couto-Rodriguez M, et al. Distinct septin heteropolymers co-exist during multicellular development in the filamentous fungus aspergillus nidulans. PLoS One. 2014;9:e92819.
Article
Google Scholar
Sellin ME, Sandblad L, Stenmark S, Gullberg M. Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell. 2011;22:3152–64.
Article
CAS
Google Scholar
Valadares NF, d’ Muniz Pereira H, Araujo APU, Garratt RC. Septin structure and filament assembly. Biophys Rev 2017;1–20.
Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol. 2008;4:e1000069.
Article
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43:D222–6.
Article
CAS
Google Scholar
Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 2016;534:254–8.
Article
CAS
Google Scholar
Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics. 2007;23:1073–9.
Article
CAS
Google Scholar
Maddison W, Maddison D. Mesquite: a modular system for evolutionary analysis. Version. 2016;10(2016):3.
Google Scholar
Delorenzi M. MARCOIL [Internet]. 2016. Available from: bcf.isb-sib.ch/Delorenzi/Marcoil/index.html.
Misof B, Misof K. A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Syst Biol. 2009;58:21–34.
Article
CAS
Google Scholar
Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM, Wägele JW, et al. Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Front Zool. 2010;7:10.
Article
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
Article
CAS
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Proc Gatew Comput Environ Workshop New Orleans, LA. 2010:1–8.
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How Many Bootstrap Replicates Are Necessary?. In: Batzoglou S. editor. Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science, vol 5541. Berlin: Springer.
Huelsenbeck JP, Ronquist FMRBAYES. Bayesian inference of phylogenetic trees. Bioinforma Oxf Engl. 2001;17:754–5.
Article
CAS
Google Scholar
Rambaut A, Suchard M, Xie D, Drummond A. Tracer [internet]. 2014. Available from: http://beast.bio.ed.ac.uk/Tracer
Åkerborg Ö, Sennblad B, Arvestad L, Lagergren J. Simultaneous Bayesian gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci. 2009;106:5714–9.
Article
Google Scholar
Sjöstrand J, Sennblad B, Arvestad L, Lagergren J. DLRS: gene tree evolution in light of a species tree. Bioinformatics. 2012;28:2994–5.
Article
Google Scholar
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and amoebozoa. Mol Phylogenet Evol. 2014;81:71–85.
Article
Google Scholar
Torruella G, de Mendoza A, Grau-Bové X, Antó M, Chaplin MA, del Campo J, et al. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Curr Biol. 2015;25:2404–10.
Article
CAS
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
Google Scholar
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology. 2014;11(1):81.
Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinforma Oxf Engl. 2003;19:301–2.
Article
CAS
Google Scholar
Parfrey LW, Lahr DJG, Knoll AH, Katz LA. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci. 2011;108:13624–9.
Article
CAS
Google Scholar
Warren DL, Geneva AJ, Lanfear R. RWTY (R we there yet): an R package for examining convergence of bayesian phylogenetic analyses. Mol Biol Evol. 2017;34:1016–20.
CAS
PubMed
Google Scholar
Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–71.
Article
CAS
Google Scholar
Paradis E, Claude J, Strimmer KAPE. Analyses of phylogenetics and evolution in R language. Bioinforma Oxf Engl. 2004;20:289–90.
Article
CAS
Google Scholar
Yu G, Smith DK, Zhu H, Guan Y, TT-Y L. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.
Article
Google Scholar
Vernot B, Stolzer M, Goldman A, Durand D. Reconciliation with non-binary species trees. J Comput Biol. 2008;15:981–1006.
Article
CAS
Google Scholar
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17:1246–7.
Article
CAS
Google Scholar
Ames RM, Talavera D, Williams SG, Robertson DL, Lovell SC. Binding interface change and cryptic variation in the evolution of protein-protein interactions. BMC Evol Biol. 2016;16:40.
Article
Google Scholar
Cao L, Ding X, Yu W, Yang X, Shen S, Yu L. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 2007;581:5526–32.
Article
CAS
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42.
Article
CAS
Google Scholar
Serrão VHB, Alessandro F, Caldas VEA, Marçal RL, D’Muniz Pereira H, Thiemann OH, et al. Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett. 2011;585:3868–73.
Article
Google Scholar
The PyMOL Molecular Graphics System. PyMOL. Schrödinger, LLC;
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.
Article
CAS
Google Scholar
Word JM, Lovell SC, Richardson JS, Richardson DC. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol. 1999;285:1735–47.
Article
CAS
Google Scholar
Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, et al. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J Mol Biol. 1999;285:1711–33.
Article
CAS
Google Scholar
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–82.
Article
CAS
Google Scholar
Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: A Sequence logo generator. Genome Res 2004;14:1188–1190.
Nishihama R, Onishi M, Pringle JR. New insights into the phylogenetic distribution and evolutionary origins of the septins. Biol Chem. 2011;392:681–7.
Article
CAS
Google Scholar
Bertin A, McMurray MA, Grob P, Park S-S, Garcia G, Patanwala I, et al. Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci. 2008;105:8274–9.
Article
CAS
Google Scholar
Versele M, Gullbrand B, Shulewitz MJ, Cid VJ, Bahmanyar S, Chen RE, et al. Protein–protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol Biol Cell. 2004;15:4568–83.
Article
CAS
Google Scholar
Meseroll RA, Howard L, Gladfelter AS. Septin ring size scaling and dynamics require the coiled-coil region of Shs1p. Mol Biol Cell. 2012;23:3391–406.
Article
CAS
Google Scholar
Hernández-Rodríguez Y, Hastings S, Momany M. The Septin AspB in aspergillus nidulans forms bars and filaments and plays roles in growth emergence and conidiation. Eukaryot Cell. 2012;11:311–23.
Article
Google Scholar
Brausemann A, Gerhardt S, Schott A-K, Einsle O, Große-Berkenbusch A, Johnsson N, et al. Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol. 2016;193:157–61.
Article
CAS
Google Scholar
Auxier B, Dee J, Berbee ML, Momany M. Data from: diversity of opisthokont septin proteins reveals structural constraints and conserved motifs. Dryad Digital Repository. 2018; https://doi.org/10.5061/dryad.2b1r2sh.