Wake DB. Homoplasy - the result of natural selection or evidence of design limitations. Am Nat. 1991;138:543–67.
Article
Google Scholar
Wake DB, Wake MH, Specht CD. Homoplasy: from detecting pattern to determining process and mechanism of evolution. Science. 2011;331:1032–5.
Article
CAS
Google Scholar
Bravo GA, Remsen JV, Brumfield RT. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae). Evolution. 2014;68:2757–74.
Article
Google Scholar
Coghill LM, Hulsey CD, Chaves-Campos J, García de Leon FJ, Johnson SG. Next generation phylogeography of cave and surface Astyanax mexicanus. Molec Phylogen Evol. 2014;79:368–74.
Article
Google Scholar
Blom MPK, Horner P, Moritz C. Convergence across a continent: adaptive diversification in a recent radiation of Australian lizards. Proc R Soc B. 2016;283:20160181.
Article
Google Scholar
Moen DS, Morlon H, Wiens JJ. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst Biol. 2016;65:146–60.
Article
Google Scholar
Meyer A, Kocher TD, Basasibwaki P, Wilson AC. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature. 1990;347:550–3.
Article
CAS
Google Scholar
Kocher TD, Conroy JA, McKaye KR, Stauffer JR. Similar morphologies of cichlid fish in lakes Tanganyika and Malawi are due to convergence. Molec Phylogenet Evol. 1993;2:158–65.
Article
CAS
Google Scholar
Kocher TD, Conroy JA, McKaye KR, Stauffer JR, Lockwood SF. Evolution of NADH dehydrogenase subunit 2 in east African cichlid fish. Molec Phylogenet Evol. 1995;4:420–32.
Article
CAS
Google Scholar
Stiassny MLJ, Meyer A. Cichlids of the Rift Lakes. Sci Am. 1999;280:64–9.
Article
Google Scholar
Salzburger W, Meyer A. The species flocks of east African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Naturwissenschaften. 2004;91:277–90.
Article
CAS
Google Scholar
Salzburger W, Mack T, Verheyen E, Meyer A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol. 2005;5:17.
Article
Google Scholar
Hulsey CD, Zheng J, Faircloth BC, Meyer A, Alfaro ME. Phylogenomic analysis of Lake Malawi cichlid fishes: further evidence that the three-stage model of diversification does not fit. Molec Phylogen Evol. 2017;114:44–8.
Article
Google Scholar
Elmer KR, Meyer A. Adaptation in the age of ecological genomics: insights from parallelism and convergence. T.R.E.E. 2011;26:298–306.
Google Scholar
Hulsey CD, Roberts RJ, Loh YHE, Rupp MF, Streelman JT. Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol Evol. 2013a;3:2262–72.
Article
CAS
Google Scholar
Hulsey CD, Keck BP, Alamillo H, O’Meara BC. Mitochondrial genome primers for Lake Malawi cichlids. Molec Ecol Res. 2013b;13:347–53.
Article
Google Scholar
Moran P, Kornfield I. Retention of an ancestral polymorphism in the mbuna species flock (Teleostei, Cichlidae) of Lake Malawi. Molec Biol Evol. 1993;10:1024–9.
Google Scholar
Meyer A. Shortcomings of the cytochrome b gene as a molecular marker. T.R.E.E. 1994;9:278–80.
CAS
Google Scholar
Delvaux D. Age of Lake Malawi (Nyasa) and water level fluctuations. Mus R Afr Centr Tervuren Dept Geol Min Rapp Ann. 1995–1996:99–108.
Loh EYH, Katz LS, Mims MC, Kocher TD, Yi SV, Streelman JT. Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genom Biol. 2008;9:R113.
Article
Google Scholar
Koblmüller S, Schliewen UK, Duftner N, Sefc KM, Katongo C, Sturmbauer C. Age and spread of the haplochromine cichlid fishes in Africa. Molec Phylogenet Evol. 2008;49:153–69.
Article
Google Scholar
Hulsey CD, Mims MC, Parnell NF, Streelman JT. Comparative rates of lower jaw diversification in cichlid adaptive radiations. J Evol Biol. 2010;23:1456–67.
Article
CAS
Google Scholar
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513(7518):375–81.
Article
CAS
Google Scholar
Herder F, Nolte AW, Pfaender J, Schwarzer J, Hadiaty R, Schliewen UK. Adaptive radiation and hybridization in Wallace’s Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proc R Soc Lond B Biol Sci. 2006;273:2209–17.
Article
Google Scholar
Sibbing FA, Nagelkerke LAJ, Stet RJM, Osse JWM. Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by trophic resource partitioning: a molecular and ecomorphological approach. Aqu Ecol. 1998;32:217–27.
Article
Google Scholar
de Graaf M, Dejen E, Osse JWM, Sibbing FA. Adaptive radiation of Lake Tana’s (Ethiopia) Labeobarbus species flock (Pisces, Cyprinidae). Mar Fresh Res. 2008;59:391–407.
Article
Google Scholar
Fryer G, Iles TD. The cichlid fishes of the Great Lakes of Africa. Edinburgh: Oliver and Boyd; 1972.
Google Scholar
Colombo M, Diepeveen ET, Muschick M, Santos ME, Indermaur A, Bioileau N, Barluenga M, Salzburger W. The ecological and genetic basis of convergent thick- lipped phenotypes in cichlid fishes. Molec Ecol. 2012;22:670–84.
Article
Google Scholar
Burress ED, Duarte A, Serra WS, Loueiro M, Gangloff MM, Siefferman L. Functional diversification within a predatory species flock. PLoS One. 2013;8:e80929.
Article
Google Scholar
Manousaki T, Hull PM, Kusche H, Machado-Schiaffino G, Franchini P, Harrod C, Elmer KR, Meyer A. Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Molec Ecol. 2013;22:650–69.
Article
CAS
Google Scholar
Henning F, Meyer A. The evolutionary genomics of cichlid fishes: explosive speciation and adaptation in the postgenomic era. Ann Rev Genom Human Genet. 2014;15:417–41.
Article
CAS
Google Scholar
Baumgarten L, Machado-Schiaffino G, Henning F, Meyer A. What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. Biol J Linn Soc. 2015;115:448–55.
Article
Google Scholar
Burress ED. Cichlid fishes as models of ecological diversification: patterns, mechanisms, and consequences. Hydrobiologia. 2015;748:7–27.
Article
Google Scholar
Ribbink AJ, Marsh BA, Marsh AC, Ribbink AC, Sharp BJ. A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi. South Afric J Zool. 1983;18:149–310.
Article
Google Scholar
Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. Genetic dissection of adaptive form and function in rapidly-speciating cichlid fishes. Evolution. 2017;71:1297–312.
Article
CAS
Google Scholar
Machado-Schiaffino G, Kautt AF, Torres-Dowdall J, Baumgarten L, Henning F, Meyer A. Incipient speciation driven by hypertrophied lips in Midas cichlids fish? Molec Ecol. 2017;26:2348–62.
Article
CAS
Google Scholar
Machado-Schiaffino G, Henning F, Meyer A. Species-specific differences in adaptive phenotypic plasticity in an ecologically relevant trophic trait: hypertrophic lips in Midas cichlid fishes. Evolution. 2014;68:2086–91.
Article
Google Scholar
Danley PD, Kocher TD. Speciation in rapidly diverging systems: lessons from Lake Malawi. Molec Ecol. 2001;10:1075–86.
Article
CAS
Google Scholar
Genner MJ, Seehausen O, Cleary DFR, Knight ME, Michel E, Turner GF. How does the taxonomic status of allopatric populations influence species richness within African cichlid fish assemblages? J Biogeogr. 2004;31:93–102.
Article
Google Scholar
Genner MJ, Turner GF. The mbuna cichlids of Lake Malawi: a model for rapid speciation and adaptive radiation. Fish Fisher. 2005;6:1–34.
Article
Google Scholar
Arnegard ME, Snoeks J, Schaefer SA. New three- spotted cichlid species with hypertrophied lips (Teleostei: Cichlidae) from the deep waters of Lake Malawi/Nyasa, Africa. Copeia. 2001:705–17.
Article
Google Scholar
Snoeks J. The cichlid diversity of Lake Malawi/Nyasa/Niassa: identification, distribution and taxonomy. El Paso, Texas: Cichlid press; 2004. p. 360.
Google Scholar
Konings A. Malawi cichlids in their natural habitat. 4th ed. El Paso, Texas: Oliver and Boyd; 2007.
Google Scholar
Oliver MK, Arnegard ME. A new genus for Melanochromis labrosus, a problematic Lake Malawi cichlid with hypertrophied lips (Teleostei: Cichlidae). Ich Expl Fresh. 2010;21:209–32.
Google Scholar
Won YJ, Sivasundar A, Wang Y, Hey J. On the origin of Lake Malawi cichlid species: a population genetic analysis of divergence. Proc Natl Acad Sci U S A. 2005;102:6581–6.
Article
CAS
Google Scholar
Hulsey CD, Mims MC, Streelman JT. Do constructional constraints influence cichlid craniofacial diversification? Proc Roy Soc Ser B. 2007;274:1867–75.
Article
CAS
Google Scholar
Joyce DA, Lunt DH, Genner MJ, Turner GF, Bills R, Seehausen O. Repeated colonization and hybridization in Lake Malawi cichlids. Curr Biol. 2011;21:R108–9.
Article
CAS
Google Scholar
York RA, Patil C, Hulsey CD, Streelman JT, Fernald RD. Evolution of bower building in Lake Malawi cichlid fish: phylogeny, morphology, and behavior. Front Ecol Evol. 2015;3:18.
Article
Google Scholar
Holzman R, Hulsey CD. Mechanical transgressive segregation and the rapid origin of trophic novelty. Sci Rep. 2017;7:40306.
Article
CAS
Google Scholar
Seehausen O, Mayhew PJ, Van Alphen JJM. Evolution of colour patterns in east African cichlid fish. J Evol Biol. 1999;12:514–34.
Article
Google Scholar
Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D. Ultraconserved elements in the human genome. Science. 2004;304:1321–5.
Article
CAS
Google Scholar
Faircloth BC, Branstetter MG, White ND, Brady SG. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among hymenoptera. Mol Ecol Res. 2014;15:489–501.
Article
Google Scholar
Faircloth BC, Sorenson L, Santini F, Alfaro ME. A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS One. 2013;8:e65923.
Article
CAS
Google Scholar
McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 2012;22:746–54.
Article
CAS
Google Scholar
McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT. A phylogeny of birds based on over 1500 loci collected by target enrichment and high-throughput sequencing. PLoS One. 2013;8:e54848.
Article
CAS
Google Scholar
Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Syst Biol. 2014;63:83–95.
Article
Google Scholar
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.
Article
Google Scholar
McGee MD, Faircloth BC, Borstein SR, Zheng J, Hulsey CD, Wainwright PC, Alfaro ME. Replicated divergence in cichlid radiations mirrors a major vertebrate innovation. Proc Roy Soc Ser B. 2016;283:20151413.
Article
Google Scholar
Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, Roy-Choudhury A. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Mol Biol Evol. 2012;29:1917–32.
Article
CAS
Google Scholar
Springer MS, Gatesy J. The gene tree delusion. Molec Phylogenet Evol. 2016;94:1–33.
Article
Google Scholar
Mims MC, Hulsey CD, Fitzpatrick BM, Streelman JT. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Molec Ecol. 2010;19:940–51.
Article
Google Scholar
Lanier HC, Knowles LL. Is recombination a problem for species-tree analyses? Syst Biol. 2012;61:691–701.
Article
Google Scholar
Edwards SV, Xi Z, Janke A, Faircloth BC, McCormack JE, Glenn TC, Zhong B, Wu S, Moriarty E. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Molec Phylogenet Evol. 2016;20:447–62.
Article
Google Scholar
Maddison WP, Knowles LL. Inferring phylogeny despite incomplete lineage sorting. Syst Biol. 2006;55:21–30.
Article
Google Scholar
Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007;56:17–24.
Article
CAS
Google Scholar
Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol. 2009;24:332–40.
Article
Google Scholar
Leaché AD, Harris RB, Rannala B, Yang Z. The influence of gene flow on species tree estimation: a simulation study. Syst Biol. 2013;63:17–30.
Article
Google Scholar
Malinsky M, Svardal H, Tyers AM et al. Whole genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. bioRxiv preprint, 2018; https://doi.org/10.1101/143859.
Glenn TC, Nilsen R, Kieran TJ, Finger JW, Pierson TW, Bentley KE, et al. Adapterama I: universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext). Molec Ecol Res. 2017; in press.
Faircloth BC. illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. 2013; https://doi.org/10.6079/J9ILL.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011;29:644–52.
Article
CAS
Google Scholar
Faircloth BC. PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics. 2016;32:786–8.
Article
CAS
Google Scholar
Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6; 2005.
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
Google Scholar
Zheng X, Levine D, Shen J, Gogarten S, Laurie C, Weir B. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–8.
Article
CAS
Google Scholar
Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
Article
CAS
Google Scholar
Lee TH, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics. 2014;15(1).
Article
Google Scholar
Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent model. Bioinformatics. 2014;30:3317–24.
Article
CAS
Google Scholar
Swofford DL. Paup*: Phylogenetic analysis using parsimony (and other methods) 2001;4.0. B5.
Blischak PD, Chifman J, Wolfe AD, Kubatko LS. HyDe: a Python Package for Genome-Scale Hybridization Detection. Syst Biol. 2018;67:821–9.
Kidd MR, Kidd CE, Kocher TD. Axes of differentiation in the bower-building cichlids of Lake Malawi. Molec Ecol. 2006;15:459–78.
Article
CAS
Google Scholar
Meyer A. Phylogenetic relationships and evolutionary processes in east African cichlids. TREE. 1993;8:279–84.
CAS
PubMed
Google Scholar
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co–opted for teeth on old and new jaws. PLoS Biol. 2009;7:233–47.
Article
CAS
Google Scholar
Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc Roy Soc Ser B. 2013;280:20131733.
Article
Google Scholar