Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, et al. Cryptic species as a window on diversity and conservation. Trends Ecol Evol. 2007;22:148–55.
Article
PubMed
Google Scholar
Pfenninger M, Schwenk K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol. 2007;7:1–7.
Article
Google Scholar
Beheregaray LB, Caccone A. Cryptic biodiversity in a changing world. J Biol. 2007;6(4):9.
Article
PubMed
PubMed Central
Google Scholar
Hebert PDN. Cywinska a, ball SL, deWaard JR. biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270:313–21. Available from: https://doi.org/10.1098/rspb.2002.2218.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B Biol Sci. 2003;270:S96–9. Available from: https://doi.org/10.1098/rsbl.2003.0025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashrafi S, Rutishauser M, Ecker K, Obrist MK, Arlettaz R, Bontadina F. Habitat selection of three cryptic Plecotus bat species in the European Alps reveals contrasting implications for conservation. Biodivers Conserv. 2013;22:2751–66.
Article
Google Scholar
Rutishauser MD, Bontadina F, Braunisch V, Ashrafi S, Arlettaz R. The challenge posed by newly discovered cryptic species: disentangling the environmental niches of long-eared bats. Divers Distrib. 2012;18:1107–19.
Article
Google Scholar
Witt JDS, Threloff DL, Hebert PDN. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol Ecol. 2006;15:3073–82.
Article
CAS
PubMed
Google Scholar
Karanth KP. Molecular systematics and conservation of the langurs and leaf monkeys of South Asia. J Genet. 2010;89:393–9.
Article
PubMed
Google Scholar
Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13:729–44.
Article
PubMed
Google Scholar
Coyne JA, Orr HA. Patterns of speciation in Drosophila. Evolution (N Y). 1989;43:362–81.
Google Scholar
Funk DJ, Omland KE. Species-level Paraphyly and Polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst. 2003;34:397–423. Available from: https://doi.org/10.1146/annurev.ecolsys.34.011802.132421.
Article
Google Scholar
Karanth KP. Species complex, species concepts and characterization of cryptic diversity: vignettes from Indian systems. Curr Sci. 2017;112:1320–4.
Google Scholar
Paterson ID, Mangan R, Downie DA, Coetzee JA, Hill MP, Burke AM, et al. Two in one: cryptic species discovered in biological control agent populations using molecular data and crossbreeding experiments. Ecol Evol. 2016;6:6139–50.
Article
PubMed
PubMed Central
Google Scholar
Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci. 2012;109:E2382–90. Available from: https://doi.org/10.1073/pnas.1210506109.
Article
CAS
Google Scholar
Höbel G, Gerhardt HC. Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution. 2003;57:894–904.
Article
PubMed
Google Scholar
Honda-Sumi E. Difference in calling song of three field crickets of the genus Teleogryllus: the role in premating isolation. Anim Behav. 2005;69:881–9.
Article
Google Scholar
Kingston T, Rossiter SJ. Harmonic-hopping in Wallacea’s bats. Nature. 2004;429:9–12.
Article
Google Scholar
Puechmaille SJ, Gouilh MA, Piyapan P, Yokubol M, Mie KM, Bates PJ, et al. The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun. 2011;2:573.
Article
PubMed
Google Scholar
Ritchie MG, Gleason JM. Rapid evolution of courtship song pattern in Drosophila willistoni sibling species. J Evol Biol. 1995;8:463–79.
Article
Google Scholar
Jones GJ. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv Study Behav. 1997;26:317–54.
Article
Google Scholar
Barlow KE, Jones G. Roosts, echolocation calls and wing morphology of two phonic types of Pipistrellus pipistrellus. Zeitschrift für Saugetierkunde. 1999;64:257–68.
Google Scholar
Davidson-Watts I, Walls S, Jones G. Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biol Conserv. 2006;133:118–27.
Article
Google Scholar
Clare EL, Adams AM, Maya-Simões AZ, Eger JL, Hebert PDN, Fenton MB. Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii. BMC Evol Biol. 2013;13:26.
Article
PubMed
PubMed Central
Google Scholar
López-Wilchis R, Flores-Romero M, Guevara-Chumacero LM, Serrato-Díaz A, Díaz-Larrea J, Salgado-Mejia F, et al. Evolutionary scenarios associated with the Pteronotus parnellii cryptic species-complex (Chiroptera: Mormoopidae). Acta Chiropterologica. 2016;18:91–116. Available from: https://doi.org/10.3161/15081109ACC2016.18.1.004.
Article
Google Scholar
Pavan AC, Marroig G. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Mol Phylogenet Evol. 2016;103:184–98 Available from: https://doi.org/10.1016/j.ympev.2016.07.011.
Article
PubMed
Google Scholar
Pavan AC, Bobrowiec PED. R PA. Geographic variation in a south American clade of mormoopid bats, Pteronotus (Phyllodia), with description of a new species. J Mammal. 2018;99:624–45.
Article
Google Scholar
De Thoisy B, Pavan AC, Delaval M, Lavergne A, Luglia T, Pineau K, et al. Cryptic diversity in common mustached bats Pteronotus cf. parnellii (Mormoopidae) in French Guiana and Brazilian Amapa. Acta Chiropterologica. 2014;16:1–13 Available from: https://doi.org/10.3161/150811014X683228.
Article
Google Scholar
Barataud M, Giosa S, Leblanc F, Rufray V, Disca T, Tillon L, et al. Identification et écologie acoustique des chiroptères de Guyane française. Le Rhinolophe. 2013;19:103–45.
Google Scholar
Johns GC, Avise JC. A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol. 1998;15:1481–90.
Article
CAS
PubMed
Google Scholar
López-Baucells A, Torrent L, Rocha R, Pavan AC, Bobrowiec PED, Meyer CFJ. Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae). Bioacoustics. 2018;27:341–57.
Article
Google Scholar
Pfennig K. Character displacement: ecological and reproductive responses to a common evolutionary problem. Q Rev Biol. 2009;84:253–76.
Article
PubMed
PubMed Central
Google Scholar
Wu H, Jiang T, Huang X, Lin H, Wang H, Wang L, et al. A test of Rensch’s rule in greater horseshoe bat (Rhinolophus ferrumequinum) with female-biased sexual size dimorphism. PLoS One. 2014;9:e86085.
Article
PubMed
PubMed Central
Google Scholar
Wu H, Jiang T, Huang X, Feng J. Patterns of sexual size dimorphism in horseshoe bats : testing Rensch ’ s rule and potential causes. Sci Rep. 2018:1–13 Available from: https://doi.org/10.1038/s41598-018-21077-7.
Butler MA, Schoener TW, Losos JB. The relationship between sexual size dimorphism and habitat use in greater Antillean Anolis lizards. Evolution. 2000;54:259–72.
CAS
PubMed
Google Scholar
Myers P. Sexual dimorphism in size of Vespertilionid bats. Am Nat. 1978;112:701–11.
Article
Google Scholar
Jiang T, You Y, Liu S, Lu G, Wang L, Wu H, et al. Factors affecting geographic variation in echolocation calls of the endemic Myotis davidii in China. Ethology. 2013;119:881–90.
Article
Google Scholar
Lin A, Jiang T, Kanwal JS, Lu G, Luo J, Wei X, et al. Geographical variation in echolocation vocalizations of the Himalayan leaf-nosed bat: contribution of morphological variation and cultural drift. Oikos. 2015;124:364–71.
Article
Google Scholar
Russo D, Almenar D, Aihartza J, Goiti U, Salsamendi E, Garin I. Habitat selection in sympatric Rhinolophus mehelyi and R. euryale (Mammalia: Chiroptera). J Zool. 2005;266:327–32.
Article
Google Scholar
Zhang J. Neutral theory and phenotypic evolution. Mol Biol Evol. 2018;35:1327–31. Available from: https://doi.org/10.1093/molbev/msy065.
Article
PubMed
PubMed Central
Google Scholar
Jones G. Scaling of echolocation call parameters in bats. J Exp Biol. 1999;202:3359–67.
CAS
PubMed
Google Scholar
Thiagavel J, Santana SE, Ratcliffe JM. Body size predicts echolocation call peak frequency better than gape height in Vespertilionid bats. Sci Rep. 2017;7:1–6 Available from: https://doi.org/10.1038/s41598-017-00959-2.
Article
CAS
Google Scholar
Grilliot ME, Burnett SC, Mendonça MT. Sexual dimorphism in big Brown bat (Eptesicus fuscus) ultrasonic vocalizations is context dependent. J Mammal. 2009;90:203–9. Available from: https://doi.org/10.1644/07-MAMM-A-161.1.
Article
Google Scholar
Puechmaille SJ, Borissov IM, Zsebok S, Allegrini B, Hizem M, Kuenzel S, et al. Female mate choice can drive the evolution of high frequency echolocation in bats: a case study with Rhinolophus mehelyi. PLoS One. 2014;9(7):e103452.
Article
PubMed
PubMed Central
Google Scholar
Berthier P, Excoffier L, Ruedi M. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc R Soc B Biol Sci. 2006;273:3101–23. Available from: https://doi.org/10.1098/rspb.2006.3680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mao X, He G, Zhang J, Rossiter SJ, Zhang S. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus). PLoS One. 2013;8(2):e56786.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol Ecol. 2012;21:3907–30.
Article
CAS
PubMed
Google Scholar
Shaw KL, Lugo E. Mating asymmetry and the direction of evolution in the Hawaiian cricket genus Laupala. Mol Ecol. 2001;10:751–9.
Article
CAS
PubMed
Google Scholar
Stein AC, Uy JA. Unidirectional introgression of a sexually selected trait across an avian hybrid zone: a role for female choice? Evolution. 2006;60:1476–85.
PubMed
Google Scholar
Angell RL, Butlin RK, Altringham JD. Sexual Segregation and Flexible Mating Patterns in Temperate Bats. PLoS One. 2013;8. https://doi.org/10.1371/journal.pone.0054194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogdanovicz W, Piksa KTA. Genetic structure in three species of whiskered bats ( genus Myotis ) during swarming. 2012;93:799–807.
Watt E, Fenton MB. DNA fingerprinting provides evidence of discriminate suckling and non-random mating in little brown bats Myotis lucifugus. Mol Ecol. 1995;4:261–4.
Article
CAS
PubMed
Google Scholar
Bogdanowicz W, Piksa K, Tereba A. Hybridization hotspots at bat swarming sites. PLoS One. 2012;7(12):e53334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melo-Ferreira J, Boursot P, Suchentrunk F, Ferrand N, Alves PC. Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia. Mol Ecol. 2005;14:2459–64.
Article
CAS
PubMed
Google Scholar
Loren H. Rieseberg. Evolution: replacing genes and traits through hybridization. Curr Biol. 2009;19:119–22.
Article
Google Scholar
Ballard JWO, Melvin RG, Miller JT, Katewa SD. Sex differences in survival and mitochondrial bioenergetics during aging in Drosophila. Aging Cell. 2007;6:699–708.
Article
CAS
PubMed
Google Scholar
Bazin E, Glemin S, Galtier N. Population size does not influence mitochondrial genetic diversity in animals. Science. 2006;312:570–2.
Article
CAS
PubMed
Google Scholar
Grant WS, Spies IB, Canino MF. Biogeographic evidence for selection on mitochondrial DNA in North Pacific walleye Pollock Theragra chalcogramma. J Hered. 2006;97:571–80.
Article
CAS
PubMed
Google Scholar
Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, et al. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol. 2008;6:0063–71.
Article
CAS
Google Scholar
Anthony ELP. Age determination in bats. Ecological and behavioral methods for the study of bats (T. H. Kunz, ed.). Washington, D.C: Smithsonian Institution Press; 1988. Pp. 47–58. https://jhupbooks.press.jhu.edu/content/ecological-and-behavioral-methods-study-bats.
Malausa T, Gilles A, Meglécz E, Blanquart H, Duthoy S, Costedoat C, et al. High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour. 2011;11:638–44.
Article
CAS
PubMed
Google Scholar
Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, et al. QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics. 2009;26:403–4.
Article
PubMed
Google Scholar
Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.
Article
CAS
PubMed
Google Scholar
Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JSC, et al. Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol. 2002;19:1251–60.
Article
CAS
PubMed
Google Scholar
Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: multiple alignment of coding SEquences accounting for frameshifts and stop codons. PLoS One. 2011;6(9):e22594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
PubMed
Google Scholar
R Core Team. R: a language and environment for statistical computing. 2015.
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Earl DA, von Holdt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.
Article
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–6.
Article
CAS
PubMed
Google Scholar
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2016. http://www.R-project.org/.
Anderson EC, Thompson EA. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002;160:1217–29.
CAS
PubMed
PubMed Central
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.
Article
CAS
Google Scholar
de Meeüs T, Béati L, Delaye C, Aeschlimann A, Renaud F. Sex-biased genetic structure in the vector of Lyme disease, Ixodes Ricinus. Evolution. 2002;56:1802–7. Available from: https://doi.org/10.1111/j.0014-3820.2002.tb00194.x.
Article
PubMed
Google Scholar
Goudet J. Computer Note J Hered. 1995;86:485–6.
Article
Google Scholar
Goudet J, Raymond M, De Meeüs T, Rousset F. Testing differentiation in diploid populations. Genetics. 1996;144:1933–40.
CAS
PubMed
PubMed Central
Google Scholar
Goudet J, Perrin N, Waser P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol. 2002;11:1103–14.
Article
CAS
PubMed
Google Scholar
Schnitzler HU, Kalko EKV. In: Kunz TH, Racey PA, editors. How Echolocating bats search and find food. in Bats: phylogeny, morphology, echolocation, and conservation biology, vol. 365. Washington, D.C.: Smithsonian Institution Press; 1998. p. 183–96.
Google Scholar