GLP, Global land project—science plan and implementation strategy” [IGBP (international geosphere biosphere program) report no. 53/international human dimensions Programme report No. 19, IGBP Secretariat, Stockholm, 2005]; www.globallandproject.org/documents.shtml. Accessed 15 Oct 2017.
Middleton NJ, Thomas DSG. World atlas of desertification. 2nd ed. New York: Edward Arnold; 1997.
Google Scholar
Reynolds JF, Stafford Smith M, Lambin EF, Turner IIBL, Mortimore M, Batterbury SP, et al. Global desertification: building a science for dryland development. Science. 2007;316:847–51.
Article
CAS
Google Scholar
Walter H. Vegetation of the earth—ecological systems of the geobiosphere. 2nd ed. New York: Springer-Verlag; 1979.
Book
Google Scholar
MEA, Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification synthesis. Washington, DC: World Resources Institute; 2005.
Google Scholar
Manafzadeh S, Staedler YM, Conti E. Visions of the past and dreams of the future in the orient: the Irano-Turanian region from classical botany to evolutionary studies. Biol Rev. 2017;92:1365–88.
Article
Google Scholar
Tietjen B, Jeltsch F, Zehe E, Classen N, Groengroeft A, Schiffers K, et al. Effects of climate change on the coupled dynamics of water and flora in drylands. Ecohydrology. 2010;3:226–37.
Google Scholar
Noy-Meir I. Desert Ecosystems: Environment and producers. Annu Rev Ecol Syst. 1973;4:25–51.
Article
Google Scholar
Wang Q, Liu JQ, Allen GA, Ma YZ, Yue W, Marr KL, et al. Arctic plant origins and early formation of circumarctic distributions: a case study of the mountain sorrel, Oxyria digyna. New Phytol. 2016;209:343–53.
Article
Google Scholar
Eiserhardt WL, Couvreur TLP, Baker WJ. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest. New Phytol. 2017;214:1408–22.
Article
Google Scholar
Yu XQ, Gao LM, Soltis DE, Soltis PS, Yang JB, Fang L, et al. Insights into the historical assembly of east Asian subtropical evergreen broadleaved forests revealed by the temporal history of the tea family. New Phytol. 2017;215:1235–48.
Article
CAS
Google Scholar
Partridge TC. The evidence for Cainozoic aridification in southern Africa. Quatern Int. 1993;17:105–10.
Article
Google Scholar
Graham A. Late cretaceous and Cenozoic history of Latin American vegetation and terrestrial environments. St Louis: Missouri Botanical Garden Press; 2010.
Google Scholar
Sun JM, Windley BF. Onset of aridification by 34 ma across the Eocene-Oligocene transition in Central Asia. Geology. 2015;43:1015–8.
Article
Google Scholar
Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MA, et al. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol. 2008;17:4398–417.
Article
CAS
Google Scholar
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 ma to present. Science. 2001;292:686–93.
Article
CAS
Google Scholar
Klak C, Reeves G, Hedderson T. Unmatched tempo of evolution in southern African semi-desert ice plants. Nature. 2004;427:63–5.
Article
CAS
Google Scholar
Good-Avila SV, Souza V, Gaut BS, Eguiarte LE. Timing and rate of speciation in Agave (Agavaceae). Proc Natl Acad Sci U S A. 2006;103:9124–9.
Article
CAS
Google Scholar
Moore MJ, Jansen RK. Molecular evidence for the age, origin and evolutionary history of the American desert plant genus Tiquilia (Boraginaceae). Mol Phylogenet Evol. 2006;39:668–87.
Article
CAS
Google Scholar
Arakaki M, Christin P-A, Nyffeler R, Lendel A, Eggli U, Ogburn RM, et al. Contemporaneous and recent radiations of the world’s major succulent plant lineages. Proc Natl Acad Sci U S A. 2011;108:8379–84.
Article
CAS
Google Scholar
Zhang ML, Hao XL, Sanderson SC. Spatiotemporal evolution of Reaumuria (Tamaricaceae) in Central Asia: insights from molecular biogeography. Phytotaxa. 2014;167:89–103.
Article
Google Scholar
Cabrera J, Jacobs SWL, Kadereit G. Biogeography of Camphorosmeae (Chenopodiaceae): tracking the tertiary history of Australian aridification. Telopea. 2011;13:313–26.
Article
Google Scholar
Guerrero P, Rosas M, Arroyoa MTK, Wiens JJ. Evolutionary lag times and recent origin of the biota of an ancient desert (Atacama–Sechura). Proc Natl Acad Sci U S A. 2013;110:11469–74.
Article
CAS
Google Scholar
Whitford WG. Ecology of desert systems. New York: Academic Press; 2002.
Google Scholar
Sheahan MC. Zygophyllaceae. In: Kubitzki K, editor. The families and genera of vascular plants. Hamburg: Springer; 2007. p. 488–500.
Google Scholar
Zhang XS. Desert. In: Wu ZY, Wang XP, Liu FX, Zhu YC, Li SY, Li B, et al. Chinese Vegetation. Beijing: Science Press; 1980. 583–595.
Google Scholar
Beier BA. A revision of the desert shrub Fagonia (Zygophyllaceae). Syst Biodivers. 2005;3:221–63.
Article
Google Scholar
Yang SM, Furukawa I. Anatomical adaptations of three species of Chinese xerophytes (Zygophyllaceae). J Forest Res. 2006;17:247–51.
Article
Google Scholar
Lauterbach M, van der Merwe PW, Keßler L, Pirie MD, Bellstedt DU, Kadereit G. Evolution of leaf anatomy in arid environments – a case study in southern African Tetraena and Roepera (Zygophyllaceae). Mol Phylogenet Evol. 2016;97:129–44.
Article
Google Scholar
Sage RF. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp Bot. 2016;67:4039–56.
Article
CAS
Google Scholar
Christin PA, Osborne CP, Sage RF, Arakaki M, Edwards EJ. C4 eudicots are not younger than C4 monocots. J Exp Bot. 2011;62:3171–81.
Article
CAS
Google Scholar
Bell CD, Soltis DE, Soltis PS. The age and diversification of the angiosperms re-revisited. Am J Bot. 2010;97:1296–303.
Article
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–8.
CAS
Google Scholar
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 2008;57:758–71.
Article
Google Scholar
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6.
Article
CAS
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
Google Scholar
Rambaut A, Drummond AJ. Tracer v1.6. 2013. http://tree.bio.ed.ac.uk/software/tracer. Accessed 11 Aug 2017.
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Article
CAS
Google Scholar
Stevens PF. Angiosperm Phylogeny Website. Version 12, July 2012 [and more or less continuously updated since]. 2001 onwards. Accessed 25 Sept 2017.
Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST 2. Cambridge: Cambridge University Press; 2015.
Book
Google Scholar
Bellstedt DU, Galley C, Pirie MD, Linder HP. The migration of paleotropical arid flora: Zygophylloideae as an example. Syst Bot. 2012;37:951–9.
Article
Google Scholar
Magallón S, Gómez-Acevedo S, Sánchez-Reyes LL. Hernández-Hernández T. a metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015;207:437–45.
Article
Google Scholar
Yu Y, Harris AJ, He XJ. S-DIVA (statistical dispersal-Vicariance analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol. 2010;56:848–50.
Article
Google Scholar
Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. Biological evidence supports an early and complex emergence of the isthmus of Panama. Proc Natl Acad Sci U S A. 2015;112:6110–5.
Article
CAS
Google Scholar
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9:e89543.
Article
Google Scholar
Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, Brown JW, et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5:701–7.
Article
Google Scholar
Moore BR, Höhna S, May MR, Rannala B, Huelsenbeck JP. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc Natl Acad Sci U S A. 2016;113:9569–74.
Article
CAS
Google Scholar
Rabosky DL, Mitchell JS, Chang J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst Biol. 2017;66:477–98.
Article
Google Scholar
Jones KE, Korotkova N, Petersen J, Henning T, Borsch T, Kilian N. Dynamic diversification history with rate upshifts in Holarctic bell-flowers (Campanula and allies). Cladistics. 2017;33:637–66.
Article
Google Scholar
Stadler T. Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci U S A. 2011;108:6182–7.
Google Scholar
Couvreur TLP, Forest F, Baker WJ. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol. 2011;9:44.
Article
Google Scholar
Mahler DL, Revell LJ, Glor RE, Losos JB. Ecological opportunity and the rate of morphological evolution in the diversification of greater Antillean anoles. Evolution. 2010;64:2731–45.
Article
Google Scholar
McGuire JA, Witt CC, Remsen JV Jr, Corl A, Rabosky DL, Altshuler DL, et al. Molecular phylogenetics and the diversification of hummingbirds. Curr Biol. 2014;24:910–6.
Article
CAS
Google Scholar
Sheahan MC, Chase MW. Phylogenetic relationships within Zygophyllaceae based on DNA sequences of three plastid regions, with special emphasis on Zygophylloideae. Syst Bot. 2000;25:371–84.
Article
Google Scholar
Wu SD, Lin L, Li HL, Yu SX, Zhang LJ, Wang W. Evolution of Asian interior arid-zone biota: evidence from the diversification of Asian Zygophyllum (Zygophyllaceae). PLoS One. 2015;10:e0138697.
Article
Google Scholar
Charles-Dominique T, Davies TJ, Hempson GP, Bezeng BS, Daru BH, Kabongo RM, et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc Natl Acad Sci U S A. 2016;113:E5572–9.
Article
CAS
Google Scholar
Crisp MD, Cook LG. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu Rev Ecol Evol Syst. 2013;44:303–24.
Article
Google Scholar
Töpel M, Antonelli A, Yesson C, Eriksen B. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLoS One. 2012;7:e50358.
Article
Google Scholar
Holbourn A, Kuhnt W, Clemens S, Prell W, Andersen N. Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography. 2013;28:688–99.
Article
Google Scholar
Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science. 2010;328:587–91.
Article
CAS
Google Scholar
Dettman DL, Kohn MJ, Quade J, Ryerson F, Ojha TP, Hamidullah S. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 my. Geology. 2001;29:31–4.
Article
CAS
Google Scholar
Huang Y, Clemens SC, Liu W, Wang Y, Prell WL. Large-scale hydrological change drove the late Miocene C4 plant expansion in the Himalayan foreland and Arabian peninsula. Geology. 2007;35:531–4.
Article
CAS
Google Scholar
Dutton JF, Barron EJ. Miocene to present vegetation changes: a possible piece of the Cenozoic cooling puzzle. Geology. 1997;25:39–41.
Article
Google Scholar
Chamberlain CP, Winnick MJ, Mix HT, Chamberlain SD, Maher K. The impact of Neogene grassland expansion and aridification on the isotopic composition of continental precipitation. Global Biogeochem Cy. 2014;28:992–1004.
Article
CAS
Google Scholar
Hernández-Hernández T, Brown JW, Schlumpberger BO, Eguiarte LE, Magallón S. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World succulent biome. New Phytol. 2014;202:1382–97.
Article
Google Scholar
Nie ZL, Funk VA, Meng Y, Deng T, Sun H, Wen J. Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol. 2016;209:1795–806.
Article
CAS
Google Scholar
Ebinger CJ, Sleep NH. Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature. 1998;395:788–91.
Article
CAS
Google Scholar
Wichura H, Jacobs LL, Lin A, Polcyn MJ, Manthi FK, Winkler DA, et al. A 17-my-old whale constrains onset of uplift and climate change in East Africa. Proc Natl Acad Sci U S A. 2015;112:3910–5.
Article
CAS
Google Scholar
Zhang ZS, Ramstein G, Schuster M, Li C, Contoux C, Yan Q. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature. 2014;513:401–4.
Article
CAS
Google Scholar
Ruddiman WF, Kutzbach JE. Late Cenozoic plateau uplift and climate change. T Roy Soc Edin-Earth. 1990;81:301–14.
Article
Google Scholar
Antonelli A, Nylander JAA, Persson C, Sanmartín I. Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A. 2009;106:9749–54.
Article
CAS
Google Scholar
Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, et al. Amazonia through time: Andean uplift, climate change, landscape evolution. Biodivers Sci. 2010;330:927–31.
CAS
Google Scholar
Liu XD, Dong BW. Influence of the Tibetan plateau uplift on the Asian monsoon-arid environment evolution. Chin Sci Bull. 2013;34:4277–91.
Article
Google Scholar
Manabe S, Broccoli AJ. Mountains and arid climates of middle latitudes. Science. 1990;247:192–5.
Article
CAS
Google Scholar
Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin JJ, Brunet M. Tectonic uplift and eastern Africa aridification. Science. 2006;313:1419–23.
Article
CAS
Google Scholar
McGowran B, Holdgate GR, Li Q, Gallagher SJ. Cenozoic stratigraphic succession in southeastern Australia. Aust J Earth Sci. 2004;51:459–96.
Article
Google Scholar
Bowler JM, Kotsonis A, Lawrence CR. Environmental evolution of the mallee region, Western Murray Basin. Proc R Soc Vic. 2006;118:161–210.
Google Scholar