Chevin L-M, Martin G, Lenormand T. Fisher’s model and the genomics of adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution. Evolution. 2010;64:3213–31.
Article
Google Scholar
Christin P-A, Weinreich DM, Besnard G. Causes and evolutionary significance of genetic convergence. Trends Genet. 2010;26:400–5.
Article
CAS
Google Scholar
Losos JB. Convergence, adaptation, and constraint. Evolution. 2011;65:1827–40.
Article
Google Scholar
Hoekstra HE, Hirschmann RJ, Bundey RA, Insel PA, Crossland JP. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 2006;313:101–4.
Article
CAS
Google Scholar
Gross JB, Borowsky R, Tabin CJ. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 2009;5:e1000326.
Article
Google Scholar
O’Quin KE, Hofmann CM, Hofmann HA, Carleton KL. Parallel evolution of opsin gene expression in African cichlid fishes. Mol Biol Evol. 2010;27:2839–54.
Article
Google Scholar
Rosenblum EB, Rompler H, Schoneberg T, Hoekstra HE. Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proc Natl Acad Sci U S A. 2010;107:2113–7.
Article
CAS
Google Scholar
Conte GL, Arnegard ME, Peichel CL, Schluter D. The probability of genetic parallelism and convergence in natural populations. Proc R Soc B. 2012;279:5039–47.
Article
Google Scholar
Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325:1095–8.
Article
CAS
Google Scholar
Natarajan C, Hoffmann FG, Weber RE, Fago A, Witt CC, Storz JF. Predictable convergence in hemoglobin function has unpredictable molecular underpinnings. Science. 2016;354:336–9.
Article
CAS
Google Scholar
Manceau M, Domingues VS, Linnen CR, Rosenblum EB, Hoekstra HR. Convergence in pigmentation at multiple levels: mutations. genes and function Philos Trans R Soc B. 2010;365:2439–50.
Article
CAS
Google Scholar
Rosenblum EB, Parent CE, Brandt EE. The molecular basis of phenotypic convergence. Annu Rev Ecol Evol Syst. 2014;45:203–26.
Article
Google Scholar
Derome N, Duchesne P, Bernatchez L. Parallelism in gene transcription among sympatric lake whitefish (Coregonus clupeaformis Mitchill) ecotypes. Mol Ecol. 2006;15:1239–49.
Article
CAS
Google Scholar
Roberge C, Einum S, Guderley H, Bernatchez L. Rapid parallel evolutionary changes of transcription profiles in farmed Atlantic salmon. Mol Ecol. 2006;15:9–20.
Article
CAS
Google Scholar
Fisher MA, Oleksiak MF. Convergence and divergence in gene expression among natural populations exposed to pollution. BMC Genomics. 2007;8:108–18.
Article
Google Scholar
Jeukens J, Bittner D, Knudsen R, Bernatchez L. Candidate genes and adaptive radiation: insights from transcriptional adaptation to the limnetic niche among coregonine fishes (Coregonus spp., Salmonidae). Mol Biol Evol. 2009;26:155–66.
Article
CAS
Google Scholar
Whitehead A, Pilcher W, Champlin D, Nacci D. Common mechanism underlies repeated evolution of extreme pollution tolerance. Proc R Soc B. 2011. https://doi.org/10.1098/rspb.2011.0847.
Article
Google Scholar
Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature. 2015;525:372–5.
Article
CAS
Google Scholar
Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol. 2009;18:3763–80.
Article
CAS
Google Scholar
Whitehead A. Comparative genomics in ecological physiology: toward a more nuanced understanding of acclimation and adaptation. J Exp Biol. 2012;215:884–91.
Article
Google Scholar
Alvarez M, Schrey AW, Richards CL. Ten years of transcriptomics in wild populations: what have we learned about their ecology and evolution? Mol Ecol. 2015;24:710–25.
Article
CAS
Google Scholar
Hochachka PW, Somero GN. Biochemical adaptation: mechanism and process in physiological evolution. 2nd ed. New York: Oxford University Press; 2002.
Google Scholar
Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol. 2001;204:3171–81.
CAS
PubMed
Google Scholar
Hochachka PW. Defense strategies against hypoxia and hypothermia. Science. 1986;231:234–41.
Article
CAS
Google Scholar
Hochachka PW, Buck LT, Doll CJ, Land SC. Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci U S A. 1996;93:9493–8.
Article
CAS
Google Scholar
Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol. 2007;69:145–70.
Article
CAS
Google Scholar
Gracey AY, Troll JV, Somero GN. Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci U S A. 2001;98:1993–8.
Article
CAS
Google Scholar
Ton C, Stamatiou D, Liew CC. Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics. 2003;13:97–106.
Article
CAS
Google Scholar
Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2a. Mol Cell Biol. 2002;22:7405–16.
Article
CAS
Google Scholar
Sollid J, De Angelis P, Gundersen K, Nilsson GE. Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol. 2003;206:3667–73.
Article
Google Scholar
Rutjes HA, Nieveen MC, Weber RE, Witte F, van Thillart GEEJM. Multiple strategies of Lake Victoria cichlids to cope with lifelong hypoxia include hemoglobin switching. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1376–83.
Article
CAS
Google Scholar
Sloman KA, Wood CM, Scott GR, Wood S, Kajimura M, Johannsson OE, Almeida-Val VMF, Val AL. Tribute to R. G. Boutilier: the effect of size on the physiological and behavioural responses of Oscar, Astronotus ocellatus, to hypoxia. J Exp Biol. 2006;209:1197–205.
Article
Google Scholar
Knope ML. Phylogenetics of the marine sculpins (Teleostei: Cottidae) of the north American Pacific coast. Mol Phyl Evol. 2013;66:341–9.
Article
Google Scholar
Mandic M, Todgham AE, Richards JG. Mechanisms and evolution of hypoxia tolerance in fish. Proc R Soc B. 2009;276:735–44.
Article
CAS
Google Scholar
Mandic M, Speers-Roesch B, Richards JG. Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle. Physiol Biochem Zool. 2013;86:92–105.
Article
CAS
Google Scholar
Mandic M, Ramon ML, Gracey AY, Richards JG. Divergent transcriptional patterns are related to differences in hypoxia tolerance between the intertidal and the subtidal sculpin. Mol Ecol. 2014;23:6091–103.
Article
CAS
Google Scholar
Henriksson P, Mandic M, Richards JG. The osmorespiratory compromise in sculpins: impaired gas exchange is associated with freshwater tolerance. Physiol Biochem Zool. 2008;81:310–9.
Article
Google Scholar
Kerr MK, Churchill GA. Experimental design for gene expression microarrays. Biostatistics. 2001;2:183–201.
Article
CAS
Google Scholar
Wu H, Yang H, Sheppard K, Churchill G, Kerr MK, Cui X. MAANOVA: Tools for analyzing micro array experiments. 2013. R package version 1.30.0.
Google Scholar
R Core Team. R: A language and environmental for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. URL http://www.R-project.org/
Google Scholar
Storey JG. A direct approach to false discovery rates. J R Stat Soc B. 2002;64:479–98.
Article
Google Scholar
Dabney A, Storey JD. Q value: q-value estimation for false discovery rate control. 2013. R package version 1.34.0.
Google Scholar
Diaz RJ, Breitburg DL. The hypoxic environment. In: Richards JG, Farrell AP, Brauner CJ, editors. Hypoxia. San Diego: Elsevier Academic Press; 2009. p. 1–23.
Google Scholar
FitzJohn RG. Diversitree: comparative phylogenetics analyses of diversification in R. Methods Ecol Evol. 2012;3:1084–92.
Article
Google Scholar
Robertson CE, Wright PA, Koblitz L, Bernier NJ. Hypoxia-inducible factor-1 mediates adaptive developmental plasticity of hypoxia tolerance in zebrafish, Danio rerio. Proc R Soc B. 2014;281:1–9.
Article
Google Scholar
Kutty MN. Respiratory quotient and ammonia excretion in Tilapia mossambica. Mar Biol. 1972;16:126–33.
CAS
Google Scholar
Medale F, Parent JP, Vellas F. Responses to prolonged hypoxia by rainbow trout (Salmo gairdneri) I. free amino acids and protein in plasma, liver and white muscle. Fish Physiol Biochem. 1987;3:183–9.
Article
CAS
Google Scholar
Kelly DA, Storey KB. Organ-specific control of glycolysis in anoxic turtles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1988;255:R774–9.
Article
CAS
Google Scholar
Churchill TA, Cheetham KM, Simpkin S, Green CH, Wang LCH, Fuller BJ. Liver metabolism in cold hypoxia: a comparison of energy metabolism and glycolysis in cold-sensitive and cold-resistant mammals. J Comp Physiol B Biochem Syst Environ Physiol. 1994;164:396–404.
Article
CAS
Google Scholar
van den Thillart G, van Raaij M. Endogenous fuels; non-invasive versus invasive approaches. In: Hochachka PW, Mommsen TP, editors. Biochemistry and molecular biology of fishes. Amsterdam: Elsevier; 1995. p. 33–63.
Google Scholar
Webster KA. Evolution of the coordinate regulation of glycolytic enzyme genes by hypoxia. J Exp Biol. 2003;206:2911–22.
Article
CAS
Google Scholar
Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF. Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2004;286:H1185–92.
Article
CAS
Google Scholar
Dewald O, Sharma S, Adrogue J, Salazar R, Duerr GF, Crapo JD, Entman ML, Taegtmeyer H. Downregulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation. 2005;112:407–15.
Article
CAS
Google Scholar
Speers-Roesch B, Sandblom E, Lau GY, Farrell AP, Richards JG. Effects of environmental hypoxia on cardiac energy metabolism and performance in tilapia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298:R104–19.
Article
CAS
Google Scholar
Aoe T, Inaba H, Kon S, Imai M, Aono M, Mizuguchi T, Saito T, Nishino T. Heat shock protein 70 messanger RNA reflects the severity of ischemia/hypoxia-reperfusion injury in the perfused rat liver. Crit Care Med. 1997;25:324–9.
Article
CAS
Google Scholar
Li F, Luan W, Zhang C, Zhang J, Wang B, Xie Y, Li S, Xiang J. Cloning of cytoplasmic heat shock protein 90 (FcHSP90) from Fenneropenaeus chinensis and its expression response to heat shock and hypoxia. Cell Stress Chaperon. 2009;14:161–72.
Article
CAS
Google Scholar
Oleksiak MF, Churchill GA, Crawford DL. Variation in gene expression within and among natural populations. Nature Genet. 2002;32:261–6.
Article
CAS
Google Scholar
Whitehead A, Crawford DL. Variation within and among species in gene expression: raw material for evolution. Mol Ecol. 2006;15:1197–211.
Article
CAS
Google Scholar
Whitehead A, Crawford DL. Neutral and adaptive variation in gene expression. Proc Natl Acad Sci U S A. 2006;103:5425–30.
Article
CAS
Google Scholar
Koritzinsky M, Magagnin MG, van den Beucken T, Seigneuric R, Savelkouls K, Dostie J, Pyronnet S, Kaufman RJ, Weppler SA, Voncken JW, Labmin P, Koumenis C, Sonenberg N, Wouters BG. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J. 2006;25:1114–25.
Article
CAS
Google Scholar