Price RA, Liston A, Strauss SH. Phylogeny and systematics of Pinus. In: Richardson DM, editor. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press; 2000. p. 49–68.
Google Scholar
Millar CI. Early evolution of pines. In: Richardson DM, editor. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press; 2000. p. 69–91.
Google Scholar
Ryberg PE, Rothwell GW, Stockey RA, Hilton J, Mapes G, Riding JB. Reconsidering relationships among stem and crown group Pinaceae: oldest record of the genus Pinus from the Early Cretaceous of Yorkshire, United Kingdom. Int J Plant Sci. 2012;173(8):917–32.
Article
Google Scholar
Falcon-Lang HJ, Mages V, Collinson M. The oldest Pinus and its preservation by fire. Geology. 2016;44(4):303–6.
Article
Google Scholar
Gernandt DS, Lopez GG, Garcia SO, Liston A. Phylogeny and classification of Pinus. Taxon. 2005;54(1):29–42.
Article
Google Scholar
Parks M, Cronn R, Liston A. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol. 2012;12(1):100.
Article
PubMed
PubMed Central
Google Scholar
Little ELJ, Critchfield WB. Subdivisions of the genus Pinus (pines). US Forest Services; 1969. Report No.: 1144.
Liston A, Robinson WA, Pinero D, Alvarez-Buylla ER. Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol. 1999;11(1):95–109.
Article
CAS
PubMed
Google Scholar
Syring J, Willyard A, Cronn R, Liston A. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Am J Bot. 2005;92(12):2086–100.
Article
PubMed
Google Scholar
Krupkin AB, Liston A, Strauss SH. Phylogenetic analysis of the hard pines (Pinus subgenus Pinus, Pinaceae) from chloroplast DNA restriction site analysis. Am J Bot. 1996;83(4):489–98.
Article
Google Scholar
He TH, Pausas JG, Belcher CM, Schwilk DW, Lamont BB. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 2012;194(3):751–9.
Article
PubMed
Google Scholar
Stevens GC, Enquist BJ. Macroecological limits to the abundance and distribution of Pinus. In: Richardson DM, editor. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press; 2000. p. 183–90.
Google Scholar
Hao ZZ, Liu YY, Nazaire M, Wei XX, Wang XQ. Molecular phylogenetics and evolutionary history of sect. Quinquefoliae (Pinus): Implications for Northern Hemisphere biogeography. Mol Phylogenet Evol. 2015;87:65–79.
Article
PubMed
Google Scholar
Eckert AJ, Hall BD. Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): Phylogenetic tests of fossil-based hypotheses. Mol Phylogenet Evol. 2006;40(1):166–82.
Article
CAS
PubMed
Google Scholar
Willyard A, Syring J, Gernandt DS, Liston A, Cronn R. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Mol Biol Evol. 2007;24(1):90–101.
Article
PubMed
Google Scholar
Gernandt DS, Magallon S, Lopez GG, Flores OZ, Willyard A, Liston A. Use of simultaneous analyses to guide fossil-based calibrations of Pinaceae phylogeny. Int J Plant Sci. 2008;169(8):1086–99.
Article
Google Scholar
Gernandt DS, Hernandez-Leon S, Salgado-Hernandez E, de la Rosa JAP. Phylogenetic relationships of Pinus subsection Ponderosae inferred from rapidly evolving cpDNA regions. Syst Bot. 2009;34(3):481–91.
Article
Google Scholar
Hernandez-Leon S, Gernandt DS, de la Rosa JAP, Jardon-Barbolla L. Phylogenetic relationships and species delimitation in Pinus section Trifoliae inferrred from plastid DNA. PLoS One. 2013;8(7):e70501.
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58(3):367–80.
Article
PubMed
Google Scholar
Benton MJ, Donoghue PCJ. Paleontological evidence to date the tree of life. Mol Biol Evol. 2007;24(1):26–53.
Article
CAS
PubMed
Google Scholar
Roquet C, Thuiller W, Lavergne S. Building megaphylogenies for macroecology: taking up the challenge. Ecography. 2013;36(1):13–26.
Article
PubMed
PubMed Central
Google Scholar
Lukoschek V, Keogh JS, Avise JC. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst Biol. 2012;61(1):22–43.
Article
PubMed
Google Scholar
Alvin KL. Further conifers of the Pinaceae from the Wealden Formation of Belgium. Mém Inst R Sci Nat Belg. 1960;146:16–21.
Google Scholar
Stockey RA, Nishida M. Pinus haboroensis sp.nov. and the affinities of permineralized leaves from the Upper Cretaceous of Japan. Can J Bot. 1986;64(9):1856–66.
Article
Google Scholar
Robison CR. Pinus triphylla and Pinus quinquefolia from the Upper Cretaceous of Massachusetts. Am J Bot. 1977;64(6):726–32.
Article
Google Scholar
Meijer JJF. Fossil woods from the Late Cretaceous Aachen Formation. Rev Palaeobot Palyno. 2000;112(4):297–336.
Article
CAS
Google Scholar
Axelrod DI, Cota J. A further contribution to closed-cone pine (Oocarpae) history. Am J Bot. 1993;80(7):743–51.
Article
Google Scholar
Axelrod DI. Cenozoic history of some western American pines. Ann Mo Bot Gard. 1986;73(3):565–641.
Article
Google Scholar
Miller CN. Structurally preserved cones of Pinus from the Neogene of Idaho and Oregon. Int J Plant Sci. 1992;153(1):147–54.
Article
Google Scholar
Xing YW, Liu YS, Su T, Jacques FMB, Zhou ZK. Pinus prekesiya sp nov from the upper Miocene of Yunnan, southwestern China and its biogeographical implications. Rev Palaeobot Palyno. 2010;160(1–2):1–9.
Article
Google Scholar
Yamada T, Yamada M, Tsukagoshi M. Fossil records of subsection Pinus (genus Pinus, Pinaceae) from the Cenozoic in Japan. J Plant Res. 2014;127(2):193–208.
Article
PubMed
Google Scholar
Klaus W. Ein Pinus canariensis Smith-Zapfenfund aus dem Ober-Miozän (Pannon) des Wiener Beckens: A fossil cone of Pinus canariensis Smith from the Upper Miocene (Pannon) of the Vienna Basin (Austria). Ann Nat-hist Museum Wien. 1980;84:79–84.
Google Scholar
dos Reis M, Donoghue PCJ, Yang Z. Bayesian molecular clock dating of species divergences in the genomics era. Nature Rev Genet. 2016;17(2):71–80.
Article
PubMed
Google Scholar
Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST. Cambridge: Cambridge University Press; 2015.
Rutschmann F, Eriksson T, Abu Salim K, Conti E. Assessing calibration uncertainty in molecular dating: The assignment of fossils to alternative calibration points. Syst Biol. 2007;56(4):591–608.
Article
CAS
PubMed
Google Scholar
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol. 2012;61(6):973–99.
Article
PubMed
PubMed Central
Google Scholar
Yang ZH, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006;23(1):212–26.
Article
CAS
PubMed
Google Scholar
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4(5):699–710.
Article
CAS
Google Scholar
Duchene S, Lanfear R, Ho SYW. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol Phylogenet Evol. 2014;78:277–89.
Article
PubMed
Google Scholar
Thorne JL, Kishino H, Painter IS. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998;15(12):1647–57.
Article
CAS
PubMed
Google Scholar
Heath TA, Huelsenbeck JP, Stadler T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci U S A. 2014;111(29):E2957–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gavryushkina A, Welch D, Stadler T, Drummond AJ. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol. 2014;10(12):e1003919.
Condamine FL, Nagalingum NS, Marshall CR, Morlon H. Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol. 2015;15:65.
Arcila D, Pyron RA, Tyler JC, Orti G, Betancur-R R. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae). Mol Phylogenet Evol. 2015;82:131–45.
Article
PubMed
Google Scholar
Grimm GW, Kapli P, Bomfleur B, McLoughlin S, Renner SS. Using more than the oldest fossils: dating Osmundaceae with three Bayesian clock approaches. Syst Biol. 2015;64(3):396–405.
Article
PubMed
Google Scholar
Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst Biol. 2016;66(1):57–73.
Google Scholar
Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S. Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A. 2012;109(40):16217–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geada Lopez G, Kamiya K, Harada K. Phylogenetic relationships of Diploxylon pines (subgenus Pinus) based on plastid sequence data. Int J Plant Sci. 2002;163(5):737–47.
Article
Google Scholar
Hilton J, Riding JB, Rothwell GW. Age and identity of the oldest pine fossils: COMMENT. Geology. 2016;44(8):e400–1.
Article
Google Scholar
Gallien L, Saladin B, Boucher FC, Richardson DM, Zimmermann NE. Does the legacy of historical biogeography shape current invasiveness in pines? New Phytol. 2016;209(3):1096–105.
Article
PubMed
Google Scholar
Ho SYW, Duchene S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol. 2014;23(24):5947–65.
Article
PubMed
Google Scholar
Linder HP, Hardy CR, Rutschmann F. Taxon sampling effects in molecular clock dating: An example from the African Restionaceae. Mol Phylogenet Evol. 2005;35(3):569–82.
Article
CAS
PubMed
Google Scholar
Soares AER, Schrago CG. The influence of taxon sampling on Bayesian divergence time inference under scenarios of rate heterogeneity among lineages. J Theor Biol. 2015;364:31–9.
Article
PubMed
Google Scholar
Poux C, Madsen O, Glos J, de Jong WW, Vences M. Molecular phylogeny and divergence times of Malagasy tenrecs: influence of data partitioning and taxon sampling on dating analyses. BMC Evol Biol. 2008;8:102.
Yang ZH, Donoghue PCJ. Dating species divergences using rocks and clocks. Philos Trans R Soc B-Biol Sci. 2016;371:20150126.
Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Roy Soc B-Biol Sci. 2015;282:20141013.
Warnock RC, Joyce WG, Parham JF, Lyson TR, Donoghue PC. Exploring uncertainty in the calibration of the molecular clock. J Vertebr Paleontol. 2012;32:190–1.
Google Scholar
Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, et al. Best practices for justifying fossil calibrations. Syst Biol. 2012;61(2):346–59.
Article
PubMed
Google Scholar
Donoghue PCJ, Yang ZH. The evolution of methods for establishing evolutionary timescales. Philos Trans R Soc B-Biol Sci. 2016;371:20160020.
Heled J, Drummond AJ. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol. 2012;61(1):138–49.
Article
PubMed
Google Scholar
Magallon SA. Dating lineages: molecular and paleontological approaches to the temporal framework of clades. Int J Plant Sci. 2004;165(4):S7–S21.
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol. 2012;61(2):289–313.
Article
PubMed
Google Scholar
Magallon S, Gomez-Acevedo S, Sanchez-Reyes LL, Hernandez-Hernandez T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 2015;207(2):437–53.
Article
PubMed
Google Scholar
Gernandt DS, Leon-Gomez C, Hernandez-Leon S, Olson ME. Pinus nelsonii and a cladistic analysis of Pinaceae ovulate cone characters. Syst Bot. 2011;36(3):583–94.
Article
Google Scholar
Smith SY, Stockey RA. A new species of Pityostrobus from the lower Cretaceous of California and its bearing on the evolution of Pinaceae. Int J Plant Sci. 2001;162(3):669–81.
Article
Google Scholar
Klymiuk AA, Stockey RA, Rothwell GW. The first organismal concept for an extinct species of Pinaceae: Pinus arnoldii Miller. Int J Plant Sci. 2011;172(2):294–313.
Article
Google Scholar
Farjon A. A Handbook of the World's Conifers, vol. 2. Leiden: BRILL; 2010.
Parks M, Cronn R, Liston A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009;7:84.
Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T. Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008;36(19).
Gernandt DS, Liston A, Pinero D. Phylogenetics of Pinus subsections Cembroides and Nelsoniae inferred from cpDNA sequences. Syst Bot. 2003;28(4):657–73.
Google Scholar
Wang XR, Tsumura Y, Yoshimaru H, Nagasaka K, Szmidt AE. Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences. Am J Bot. 1999;86(12):1742–53.
Article
CAS
PubMed
Google Scholar
Song BH, Wang XQ, Wang XR, Ding KY, Hong DY. Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Mol Ecol. 2003;12(11):2995–3001.
Article
PubMed
Google Scholar
Katoh K, Standley DM. MAFFT Multiple sequence alignment software Version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56(4):564–77.
Article
CAS
PubMed
Google Scholar
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol. 2014;10(4):e1003537.
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, et al. Data from: Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. Dryad Digital Repository. 2017. doi:10.5061/dryad.74f2r.2.
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Mol Biol Evol. 2012;29(6):1695–701.
Article
CAS
PubMed
Google Scholar
Heath TA: Divergence Time Estimation using BEAST v2.2.0. In. Source URL: http://treethinkers.org/tutorials/divergence-time-estimation-using-beast/: Tutorial written for workshop on applied phylogenetics and molecular evolution, Bodega Bay California; 2015: 1–44.
Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;33(2):1–22.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014. http://www.r-project.org.
Google Scholar
Heibl C. PHYLOCH: R language tree plotting tools and interfaces to diverse phylogenetic software packages. 2013. http://www.christophheibl.de/Rpackages.html. Accessed 28 Mar 2017.
Paradis E, Claude J, Strimmer K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20(2):289–90.
Article
CAS
PubMed
Google Scholar
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24(1):129–31.
Article
CAS
PubMed
Google Scholar
Hijmans RJ. Raster: Geographic Data Analysis and Modeling. R package version 2.3–33; 2016. http://cran.r-project.org/package=raster. Accessed 28 Mar 2017.
Blakey RC. Global Paleogeography; 2016 [updated June, 2016]. https://www2.nau.edu/rcb7/. Accessed 4 Mar 2017.