Pujar A, Jaiswal P, Kellog EA, Ilic K, Vincent L, Avraham S, et al. Whole-plant growth stage ontology for angiosperms and its application in plant biology. Plant Physiol. 2006;142:414–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Linder CR. Adaptive Evolution of Seed Oils in Plants: Accounting for the Biogeographic Distribution of Saturated and Unsaturated Fatty Acids in Seed Oils. Am Nat. 2000;156:442–58.
Article
Google Scholar
Bewley JD, Black M. Seeds – physiology of development and germination. USA: Plenum; 1994.
Google Scholar
Gardin A, Dürr C, Colbach N. Prediction of germination rates of weed species: Relationship between germination speed parameters and species traits. Ecol Model. 2011;222:626–36.
Article
Google Scholar
Baker JM. The effects of oils on plants. Environ Pollut. 1970;1:27–44.
Article
CAS
Google Scholar
Levin DA. The oil content of seeds: an ecological perspective. Am Nat. 1974;108:193–206.
Article
Google Scholar
Lersten NR, Czlapinski AR, Curtis JD, Freckmann R, Horner HT. Oil bodies in leaf mesophyll cells of angiosperms: Overview and a selected survey. Am J Bot. 2006;93:1731–9.
Article
PubMed
Google Scholar
Harwood JL. Plant acyl lipids: structure, distribution, and analysis. New York: Academic; 1980.
Google Scholar
Matthäus B. The new database Seed Oil Fatty Acids (SOFA). Lipid Technol. 2012;24:230–4.
Article
Google Scholar
O’Neill CM, Gill S, Hobbs D, Morgan C, Bancroft I. Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry. 2003;64:1077–90.
Article
PubMed
Google Scholar
Johnson HW, Bernard RL. Soybean genetics and breeding. Adv Agron. 1962;14:149–222.
Article
Google Scholar
Barker RJ, McKenzie RJH. Heritability of oil content in oats, Avena sativa L. Crop Sci. 1972;12:201–2.
Article
Google Scholar
Genter CF, Eheart JF, Linkous WN. Effects of location, hybrid, fertilizer, and rate of planting on the oil and protein contents of corn grain. Agron J. 1956;48:63–7.
Article
CAS
Google Scholar
Comstock V, Ford JH, Gimore EC. Seed quality characteristics associated with the D locus of flax, Linum usitatissimum L. Crop Sci. 1969;9:513–4.
Article
Google Scholar
Kittock DL, Williams JH. Effects of plant population on castor bean yield. Agron J. 1970;62:527–9.
Article
Google Scholar
Vinogradova TN, Andronova EV. Development of orchid seeds and seedlings. Netherlands: Kluwer Academic Publishers; 2002.
Google Scholar
Arditti J. Factors affecting the germination of orchid seeds. Bot Rev. 1967;33:1–97.
Article
Google Scholar
Prutsch J, Schardt A, Schill R. Adaptations of an orchid seed to water uptake and storage. Plant Syst Evol. 2000;220:69–75.
Article
Google Scholar
Manning JC, Staden JV. The development and mobilization of seed reserves in some African orchids. Aust J Bot. 1987;35:343–53.
Article
CAS
Google Scholar
Arditti J, Ernst R. Physiology of germinating orchid seeds. USA: Cornell University; 1984.
Google Scholar
Katavic V, Reed DW, Taylor DC, Giblin EM, Barton DL, Zou J, et al. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity. Plant Physiol. 1995;108:399–409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC. The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol. 2006;60:377–87.
Article
CAS
PubMed
Google Scholar
Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC. The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 1999;19:645–53.
Article
CAS
PubMed
Google Scholar
Jako C, Kumar A, Wei Y, Zou J, Barton DL, Giblin EM, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 2001;126:861–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim MJ, Yang SW, Mao HZ, Veena SP, Yin JL, Chua NH. Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels. 2014;7:36.
Article
PubMed
PubMed Central
Google Scholar
Fatihi A, Zbierzak AM, Dörmann P. Alterations in seed development gene expressions affect size and oil content of Arabidopsis seeds. Plant Physiol. 2013;163:973–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kelly AA, Shaw E, Powers SJ, Kurup S, Eastmond PJ. Suppression of the Sugar-dependent1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotech J. 2013;11:355–61.
Article
CAS
Google Scholar
Kelly AA, van Erp H, Quettier AL, Shaw E, Menard G, Kurup S, et al. The Sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis. Plant Physiol. 2013;162:1282–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Focks N, Benning C. Wrinkled1: a novel, low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism. Plant Physiol. 1998;118:91–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol. 1999;120:1057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol. 2011;156:1577–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baud S, Mendoza MS, To A, Harscoet E, Lepiniec L, Dubreucq B. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis. Plant J. 2007;50:825–8.
Article
CAS
PubMed
Google Scholar
Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 2008;54:608–20.
Article
CAS
PubMed
Google Scholar
Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J. 2007;52:716–29.
Article
CAS
PubMed
Google Scholar
Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, et al. Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell. 1997;9:909–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oilseed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotech J. 2007;5:431–41.
Article
CAS
Google Scholar
Ohlrogge J, Jaworski JG. Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:109–36.
Article
CAS
PubMed
Google Scholar
Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Targeting of the Arabidopsis homomeric acetyl-Coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 1997;113:75–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Pang H, Li M, Peng B, Guo H, Yan Q, et al. Evolutionary pattern of the FAE1 gene in Brassicaceae and its correlation with the erucic acid trait. PLoS One. 2013;8:e83535.
Article
PubMed
PubMed Central
Google Scholar
Sanyal A, Linder CR. Plasticity and constraints on fatty acid composition in the phospholipids and triacylglycerols of Arabidopsis accessions grown at different temperatures. BMC Plant Biol. 2013;13:63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehninger A. Biochemistry. USA: Worth; 1993.
Google Scholar
Huang AHC. Oil bodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol. 1992;43:177–200.
Article
CAS
Google Scholar
Miquel MF, Browse JA. High-oleate oilseeds fail to develop at low temperature. Plant Physiol. 1994;106:421–7.
CAS
PubMed
PubMed Central
Google Scholar
Thompson GA, Li C. Altered fatty acid composition of membrane lipids in seeds and seedling tissues. Netherlands: Kluwer Academic Publishers; 1997.
Google Scholar
Cai ZQ, Jiao DY, Tang SX, Dao XS, Lei YB, Cai CT. Leaf Photosynthesis, Growth, and Seed Chemicals of Sacha Inchi Plants Cultivated Along an Altitude Gradient. Crop Sci. 2012;52:1859.
Article
CAS
Google Scholar
El Bassam N. Handbook of Bioenergy Crops: A Complete Reference to Species, Development and Applications. London: Earthscan; 2010.
Google Scholar
Warwick SI, Francis A, Gugel RK. Guide to Wild Germplasm: Brassica and allied crops (tribe Brassiceae, Brassicaceae). Canada: Agriculture and Agri-Food Canada; 2009.
Google Scholar
Lambinon J, Delvosalle L, Duvigneaud J, avec la collaboration de Geerink D, Lebeau J, Schumacker R, Vannerom H. Nouvelle flore de la Belgique du G. D. de Luxembourg, du Nord de la France et des régions voisines. Belgique: Jardin botanique national de Belgique; 2004.
Google Scholar
Chamberlain S, Boettiger C, Ram K, Barve V, Mcglinn D. rgbif: Interface to the Global Biodiversity Information Facility API. 2014. R package version 0.5.0. URL: https://github.com/ropensci/rgbif.
Google Scholar
R Development Core Team. A language and environment for statistical computing. Austria: R Foundation for Statistical Computing; 2013. 2013. URL http://www.R-project.org. ISBN 3-900051-07-0.
Google Scholar
Stevens PF. Angiosperm Phylogeny Website. Version 13, (2001 onwards). 2013.
Google Scholar
Kelly CK, Purvis A. Seed size and establishment conditions in tropical trees. On the use of taxonomic relatedness in determining ecological patterns. Oecologia. 1993;94:356–60.
Article
Google Scholar
Wilkinson L. SYSTAT. Version 13.0. SPSS, USA. 2010.
Google Scholar
Zhang L, Wang S-B, Li Q-G, Song J, Hao Y-Q, Zhou L, Zheng H-Q, Dunwell JM, Zhang Y-M. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants. PLoS One. 2016;11(5):e0154882. http://doi.org/10.1371/journal.pone.0154882.
Article
PubMed
PubMed Central
Google Scholar
McNair JB. A study of some characteristics of vegetable oils. USA: Field Museum of Natural History; 1930.
Book
Google Scholar
Hartwig EE. Varietal development. USA: American Society of Agronomy; 1973.
Google Scholar
Salisbury EJ. The reproductive capacity of plants. London: Bell; 1942.
Google Scholar
Bretagnolle F, Matejicek A, Gregoire S, Reboud X, Gaba S. Determination of fatty acids content, global antioxidant activity and energy value of weed seeds from agricultural fields in France. Weed Res. 2016;56:78–95.
Article
CAS
Google Scholar
Kolawole GO, Adebayo KA, Adebayo MA. Effect of seed sizes on the growth and establishment of seedlings of Sheanut tree (Vitellaria paradoxa). J Agr Sci Tech. 2011;5:428–32.
Google Scholar
Swarbrick JT, Raymond JC. The identification of the seeds of the British Papaveraceae. Ann Bot. 1970;34:1115–22.
Google Scholar
Macedo MC, Scalon SPQ, Sari AP, Scalon F, Homero R, Yara BCJ, Robaina AD. Biometria de frutos e sementes e germinação de Magonia pubescens ST. Hil (sapindaceae). Rev Bras Sementes. 2009;31:202–11.
Article
Google Scholar
Janzen DH. Herbivores and the number of tree species in tropical forests. Am Nat. 1970;102:592–5.
Article
Google Scholar
Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Netherlands: Center for Agricultural Publication and Documentation; 1971.
Google Scholar
Seigler DS. Toxic seed lipids. USA: Academic; 1979.
Google Scholar
Collins KA, Horn DJ. The role of oil content and size in seed selection by wild birds. USA: Trans Ill State Acad Sci; 2012.
Google Scholar
Miranda ZFS, Arias CAA, Toledo JFF, Oliveira MF. Soybean seed oil content: genetic control under different photoperiods. Genet Mol Biol. 1998;21:387–94.
Article
Google Scholar
Tianfu H, Jinling W, Qingkai Y, Junyi G. Effects of post-flowering photoperiod on chemical composition of soybeans. Zhongguo Nongye Kexue. 1997;30:47–53.
Google Scholar