Gavrilets S. Fitness landscapes and the origin of species. Princeton: Princeton University Press; 2004.

Google Scholar

Gerhart J, Kirschner M. The theory of facilitated variation. Proc Natl Acad Sci U S A. 2007;104:8582–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Maynard SJ. Natural selection and the concept of a protein space. Nature. 1970;225:563–4.

Article
Google Scholar

Wagner GP. Homology, genes, and evolutionary innovation. Princeton: Princeton University Press; 2014.

Book
Google Scholar

Newman SA. The developmental genetic toolkit and the molecular homology—analogy paradox. Biol Theory. 2006;1:12–6.

Article
Google Scholar

Badyaev AV, Walsh JB. Epigenetic processes and genetic architecture in character origination and evolution. In: Charmantier A, Garant D, Kruuk LEB, editors. Quantitative genetics in the wild. Oxford: Oxford University Press; 2014. p. 177–89.

Chapter
Google Scholar

Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature. 2006;444:929–32.

Article
CAS
PubMed
Google Scholar

Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Epistasis as the primary factor in molecular evolution. Nature. 2012;490:535–8.

Article
CAS
PubMed
Google Scholar

Gravner J, Pitman D, Gavrilets S. Percolation on fitness landscapes: effects of correlation, phenotype, and incompatibilities. J Theor Biol. 2007;248:627–45.

Article
PubMed
PubMed Central
Google Scholar

Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ. Empirical fitness landscapes reveal accessible evolutionary paths. Nature. 2007;445:383–6.

Article
CAS
PubMed
Google Scholar

Rice SH. The evolution of developmental interactions: Epistasis, canalization, and integration. In: Wolf JB, Brodie III ED, Wade MJ, editors. Epistasis and the evolutionary process. New York: Oxford University Press; 2001. p. 82–98.

Google Scholar

Alberch P. From genes to phenotype: Dynamical systems and evolvability. Genetica. 1991;84:5–11.

Article
CAS
PubMed
Google Scholar

Arthur W. Developmental drive: An important determinant of the direction of phenotypic evolution. Evol Dev. 2001;3:271–8.

Article
CAS
PubMed
Google Scholar

Forgacs G, Newman SA. Biological physics of the developing embryo. Cambridge: Cambridge University Press; 2005.

Book
Google Scholar

Whyte LL. Internal factors in evolution. New York: George Braziller; 1965.

Google Scholar

Bloom JD, Labthavikul ST, Otey CR, Arnold FH. Protein stability promotes evolvability. Proc Natl Acad Sci U S A. 2006;103:5869–74.

Article
CAS
PubMed
PubMed Central
Google Scholar

Bridgham JT, Ortlund EA, Thornton JW. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature. 2009;461:515–9.

Article
CAS
PubMed
Google Scholar

Harms MJ, Thornton JW. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature. 2014;512:203–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

Newman SA. Physico-genetic determinants in the evolution of development. Science. 2012;338:217–9.

Article
CAS
PubMed
Google Scholar

Pagel M, Pomiankowski A. Evolutionary genomics and proteinomics. Sunderland: Sinauer Associates; 2008.

Google Scholar

Povolotskaya IS, Kondrashov FA. Sequence space and the ongoing expansion of the protein universe. Nature. 2010;465:922–7.

Article
CAS
PubMed
Google Scholar

Wagner A. The molecular origins of evolutionary innovations. Trends Genet. 2011;27:397–410.

Article
CAS
PubMed
Google Scholar

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. Evolutionary rate in the protein interaction network. Science. 2002;296:750–2.

Article
CAS
PubMed
Google Scholar

Light S, Kraulis P, Elofsson A. Preferential attachment in the evolution of metabolic networks. BMC Genomics. 2005;6:159.

Article
PubMed
PubMed Central
CAS
Google Scholar

Liu WC, Lin WH, Davis AJ, Jordán F, Yang HT, Hwang MJ. A network perspective on the topological importance of enzymes and their phylogenetic conservation. BMC Bioinformatics. 2007;8:121.

Article
PubMed
PubMed Central
CAS
Google Scholar

Yamada T, Bork P. Evolution of biomolecular networks-lessons from metabolic and protein interactions. Nat Rev Mol Cell Biol. 2009;10:791–803.

Article
CAS
PubMed
Google Scholar

Zhao J, Ding G-H, Tao L, Yu H, Yu Z-H, Luo J-H, et al. Modular co-evolution of metabolic networks. BMC Bioinformatics. 2007;8:311.

Article
PubMed
PubMed Central
Google Scholar

Maslov S, Krishna S, Pang TY, Sneppen K. Toolbox model of evolution of prokaryotic metabolic networks and their regulation. Proc Natl Acad Sci U S A. 2009;106:9743–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Banerjee A. Structural distance and evolutionary relationship of networks. BioSyst. 2011;107:186–96.

Article
Google Scholar

Borenstein E, Kupiec M, Feldman MW, Ruppin E. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc Natl Acad Sci U S A. 2008;105:14482–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

Ebenhöh O, Handorf T, Kahn D. Evolutionary changes of metabolic networks and their biosynthetic capacities. IEE P Syst Biol. 2006;153:354–8.

Article
Google Scholar

Mithani A, Hein J, Preston GM. Comparative analysis of metabolic networks provides insight into the evolution of plant pathogenic and non pathogenic lifestyles in *Pseudomonas*. Mol Biol Evol. 2011;28:483–99.

Article
CAS
PubMed
Google Scholar

Navlakha S, Kingsford C. Network archaeology: uncovering ancient networks from present-day interactions. PLoS Comp Biol. 2011;7, e1001119.

Article
CAS
Google Scholar

Barabási A-L, Albert R. Emergence of scaling in random networks. Science. 1999;286:509–12.

Article
PubMed
Google Scholar

Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L. The large-scale organization of metabolic networks. Nature. 2000;407:651–4.

Article
CAS
PubMed
Google Scholar

Thieffry D, Huerta AM, Pérez-Rueda E, Collado-Vides J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in *Escherichia coli*. Bioessays. 1998;20:433–40.

Article
CAS
PubMed
Google Scholar

Barabási A-L. Luck or reason. Nature. 2012;489:507–8.

Article
PubMed
CAS
Google Scholar

Eisenberg E, Levanon EY. Preferential attachment in the protein network evolution. Phys Rev Lett. 2003;91:138701.

Article
PubMed
CAS
Google Scholar

Bernhardsson S, Gerlee P, Lizana L. Structural correlations in bacterial metabolic networks. BMC Evol Biol. 2011;11:20.

Article
PubMed
PubMed Central
Google Scholar

Hahn MW, Kern AD. Comparative genomics of centrality and essentiality in three Eukaryotic protein-interaction networks. Mol Biol Evol. 2005;22:803–6.

Article
CAS
PubMed
Google Scholar

Xu K, Bezakova I, Bunimovich L, Yi SV. Path lengths in protein–protein interaction networks and biological complexity. Proteomics. 2011;11:1857–67.

Article
CAS
PubMed
Google Scholar

Ramsay H, Rieseberg LH, Ritland K. The correlation of evolutionary rate with pathway position in plant terpenoid biosynthesis. Mol Biol Evol. 2009;26:1045–53.

Article
CAS
PubMed
Google Scholar

Rausher MD, Miller RE, Tiffin P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol. 1999;16:266–74.

Article
CAS
PubMed
Google Scholar

Wright KM, Rausher MD. The evolution of control and distribution of adaptive mutations in a metabolic pathway. Genetics. 2010;184:483–502.

Article
CAS
PubMed
PubMed Central
Google Scholar

Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology. Nature. 1999;402:C47–52.

Article
CAS
PubMed
Google Scholar

Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi A-L. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.

Article
CAS
PubMed
Google Scholar

Badyaev A. Evolvability and robustness in color displays: Bridging the gap between theory and data. Evol Biol. 2007;34:61–71.

Article
Google Scholar

Nagy L. Changing patterns of gene regulation in the evolution of arthropod morphology. Am Zool. 1998;38:818–28.

Article
Google Scholar

Raff EC, Raff RA. Dissociability, modularity, evolvability. Evol Dev. 2000;2:235–7.

Article
CAS
PubMed
Google Scholar

von Dassow G, Munro E. Modularity in animal development and evolution: elements of a conceptual framework for EvoDevo. J Exp Zool. 1999;285:307–25.

Article
Google Scholar

Wagner GP, Altenberg L. Perspective: Complex adaptations and the evolution of evolvability. Evolution. 1996;50:967–76.

Article
Google Scholar

Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998;95:14863–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Halfon MS, Grad Y, Church GM, Michelson AM. Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Res. 2002;12:1019–28.

CAS
PubMed
PubMed Central
Google Scholar

Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N. Revealing modular organization in the yeast transcriptional network. Nat Genet. 2002;31:370–77.

CAS
PubMed
Google Scholar

Niehrs C, Pollet N. Synexpression groups in eukaryotes. Nature. 1999;402:483–7.

Article
CAS
PubMed
Google Scholar

Campillos M, von Mering C, Jensen LJ, Bork P. Identification and analysis of evolutionarily cohesive functional modules in protein networks. Genome Res. 2006;16:374–82.

Article
CAS
PubMed
PubMed Central
Google Scholar

Chen Y, Dokholyan NV. The coordinated evolution of yeast proteins is constrained by functional modularity. Trends Genet. 2006;22:416–9.

Article
CAS
PubMed
Google Scholar

Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005;37:1372–5.

Article
PubMed
CAS
Google Scholar

Wagner A. Evolutionary constraints permeate large metabolic networks. BMC Evol Biol. 2009;9:231.

Article
PubMed
PubMed Central
CAS
Google Scholar

Klassen JL. Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics. PLoS One. 2010;5, e11257.

Article
PubMed
PubMed Central
CAS
Google Scholar

Umeno D, Tobias AV, Arnold FH. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev. 2005;69:51–78.

Article
CAS
PubMed
PubMed Central
Google Scholar

Britton G, Liaaen-Jensen S, Pfander H, editors. Carotenoids. Boston: Birkhäuser Verlag; 2004.

Google Scholar

Schmidt K, Connor A, Britton G. Analysis of pigments: carotenoids and related polyenes. In: Goodfellow M, O'Donnell AG, editors. Chemical methods in prokaryotic systematics. Chichester: John Wiley & Sons; 1994. p. 403–61.

Google Scholar

Brush AH. Metabolism of carotenoid-pigments in birds. FASEB J. 1990;4:2969–77.

CAS
PubMed
Google Scholar

McGraw KJ. The mechanics of carotenoid coloration in birds. In: Hill GE, McGraw KJ, editors. Bird coloration volume 1: Mechanisms and measurements. Cambridge: Harvard University Press; 2006. p. 177–242.

Google Scholar

Badyaev A, Morrison E, Belloni V, Sanderson M. Tradeoff between robustness and elaboration in carotenoid networks produces cycles of avian color diversification. Biol Direct. 2015;10:45.

Article
PubMed
PubMed Central
CAS
Google Scholar

Jaccard P. The distribution of the flora in the alpine zone. New Phytol. 1912;11:37–50.

Article
Google Scholar

Rodrigues JFM, Wagner A. Genotype networks, innovation, and robustness in sulfur metabolism. BMC Syst Biol. 2011;5:39.

Article
CAS
Google Scholar

Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.03. 2015. [http://mesquiteproject.wikispaces.com/]

Midford PE, Garland T, Jr., Maddison WP. PDAP package of Mesquite. Version 1.16. 2011. [http://mesquiteproject.org/pdap_mesquite/].

Guimerà R, Amaral LAN. Functional cartography of complex metabolic networks. Nature. 2005;433:895–900.

Article
PubMed
CAS
PubMed Central
Google Scholar

Guimerà R, Amaral LAN. Cartography of complex networks: Modules and universal roles. J Stat Mech Theor Exp. 2005;2005:P02001-1-13.

Harary F. Graph theory. Reading: Addison-Wesley; 1969.

Google Scholar

Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics. 2011;27:431–2.

Article
CAS
PubMed
Google Scholar

Assenov Y, Ramírez F, Schelhorn S-E, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008;24:282–4.

Article
CAS
PubMed
Google Scholar

Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive visualization of biological networks and protein structures. Nat Protoc. 2012;7:670–85.

Article
CAS
PubMed
Google Scholar

McSweeney PJ. Randomnetworks. Version 1.0. 2008. [http://apps.cytoscape.org/apps/randomnetworks]

Ebenhöh O, Handorf T, Heinrich R. A cross species comparison of metabolic network functions. Genome Inform. 2005;16:203–13.

PubMed
Google Scholar

Thomas DB, McGraw KJ, Butler MW, Carrano MT, Madden O, James HF. Ancient origins and multiple appearances of carotenoid-pigmented feathers in birds. Proc R Soc B. 2014;281:20140806.

Article
PubMed
PubMed Central
Google Scholar

Furnham N, Sillitoe I, Holliday GL, Cuff AL, Laskowski RA, Orengo CA, et al. Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. PLoS Comp Biol. 2012;8, e1002403.

Article
CAS
Google Scholar

Altincicek B, Kovacs JL, Gerardo NM. Horizontally transferred fungal carotenoid genes in the two-spotted spider mite *Tetranychus urticae*. Biol Lett. 2012;8:253–7.

Article
PubMed
Google Scholar

Kreimer A, Borenstein E, Gophna U, Ruppin E. The evolution of modularity in bacterial metabolic networks. Proc Natl Acad Sci U S A. 2008;105:6976–81.

Article
CAS
PubMed
PubMed Central
Google Scholar

Moran NA, Jarvik T. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science. 2010;328:624–7.

Article
CAS
PubMed
Google Scholar

Nováková E, Moran NA. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol. 2012;29:313–23.

Article
PubMed
CAS
Google Scholar

Sloan DB, Moran NA. Endosymbiotic bacteria as a source of carotenoids in whiteflies. Biol Lett. 2012;8:986–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, et al. Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci U S A. 2003;100:11394–399.

Article
CAS
PubMed
PubMed Central
Google Scholar

Kondrashov FA. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc R Soc B. 2012;279:5048–57.

Article
PubMed
PubMed Central
Google Scholar

Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–20.

Article
CAS
PubMed
PubMed Central
Google Scholar

Walsh N, Dale J, McGraw KJ, Pointer MA, Mundy NI. Candidate genes for carotenoid coloration in vertebrates and their expression profiles in the carotenoid-containing plumage and bill of a wild bird. Proc R Soc B. 2012;279:58–66.

Article
CAS
PubMed
Google Scholar

Hudon J, Anciães M, Bertacche V, Stradi R. Plumage carotenoids of the pin-tailed manakin (*Ilicura militaris*): Evidence for the endogenous production of rhodoxanthin from a colour variant. Comp Biochem Physiol B Biochem Mol Biol. 2007;147:402–11.

Article
PubMed
CAS
Google Scholar

Prum RO, LaFountain AM, Berro J, Stoddard MC, Frank HA. Molecular diversity, metabolic transformation, and evolution of carotenoid feather pigments in cotingas (Aves: Cotingidae). J Comp Physiol B. 2012;182:1095–116.

Article
CAS
PubMed
Google Scholar

Prum R, LaFountain A, Berg C, Tauber M, Frank H. Mechanism of carotenoid coloration in the brightly colored plumages of broadbills (Eurylaimidae). J Comp Physiol B. 2014;184:651–72.

Article
CAS
PubMed
Google Scholar

Morrison ES, Badyaev AV. The landscape of evolution: Reconciling structural and dynamic properties of metabolic networks in adaptive diversifications. Integr Comp Biol. 2016;56:235-46.

Bongaerts GP, Vliegenthart JS. Effect of aminoglycoside concentration on reaction rates of aminoglycoside-modifying enzymes. Antimicrob Agents Chemother. 1988;32:740–6.

Article
CAS
PubMed
PubMed Central
Google Scholar

Matsuno R, Nakanishi K, Ohnishi M, Hiromi K, Kamikubo T. Threshold in a single enzyme reaction system: reaction of maltose catalyzed by saccharifying α-Amylase from B. Subtilis. J Biochem. 1978;83:859–62.

CAS
PubMed
Google Scholar

Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex networks. Nature. 2000;406:378–82.

Article
CAS
PubMed
Google Scholar

Jeong H, Mason SP, Barabási A-L, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411:41–2.

Article
CAS
PubMed
Google Scholar

Schmidt S, Sunyaev S, Bork P, Dandekar T. Metabolites: a helping hand for pathway evolution? Trends Biochem Sci. 2003;28:336–41.

Article
CAS
PubMed
Google Scholar

Aris-Brosou S. Determinants of adaptive evolution at the molecular level: The extended complexity hypothesis. Mol Biol Evol. 2005;22:200–9.

Article
CAS
PubMed
Google Scholar

Badyaev AV. “Homeostatic hitchhiking”: A mechanism for the evolutionary retention of complex adaptations. Integr Comp Biol. 2013;53:913–22.

Article
PubMed
Google Scholar

Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol. 1987;128:11–45.

Article
CAS
PubMed
Google Scholar

Heijnen JJ, van Gulik WM, Shimizu H, Stephanopoulos G. Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data. Metab Eng. 2004;6:391–400.

Article
CAS
PubMed
Google Scholar

LaPorte DC, Walsh K, Koshland DE. The branch point effect. Ultrasensitivity and subsensitivity to metabolic control. J Biol Chem. 1984;259:14068–75.

CAS
PubMed
Google Scholar

Pritchard L, Kell DB. Schemes of flux control in a model of *Saccharomyces cerevisiae* glycolysis. Eur J Biochem. 2002;269:3894–904.

Article
CAS
PubMed
Google Scholar

Rausher MD. The evolution of genes in branched metaoblic pathways. Evolution. 2013;67:34–48.

Article
PubMed
Google Scholar

Flowers J, Sezgin E, Kumagai S, Duvernell D, Matzkin L, Schmidt P, et al. Adaptive evolution of metabolic pathways in *Drosophila*. Mol Biol Evol. 2007;24:1347–54.

Article
CAS
PubMed
Google Scholar

Higginson DM, Belloni V, Davis SN, Morrison ES, Andrews JE, Badyaev AV. Evolution of long-term coloration trends with biochemically unstable ingredients. Proc R Soc B. 2016;283:20160403.

Article
PubMed
Google Scholar

Wang Z, Zhang J. In search of the biological significance of modular structures in protein networks. PLoS Comp Biol. 2007;3, e107.

Article
CAS
Google Scholar

Fraser HB. Modularity and evolutionary constraint on proteins. Nat Genet. 2005;37:351–2.

Article
CAS
PubMed
Google Scholar

Fox DL. Metabolic fractionation, storage and display of carotenoid pigments by flamingoes. Comp Biochem Physiol. 1962;6:1–24.

Article
CAS
PubMed
Google Scholar

Fox DL, Smith VE, Wolfson AA. Carotenoid selectivity in blood and feathers of lesser (African), Chilean and greater (European) flamingos. Comp Biochem Physiol. 1967;23:225–32.

Article
CAS
PubMed
Google Scholar

McGraw KJ, Beebee MD, Hill GE, Parker RS. Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers. Comp Biochem Physiol B Biochem Mol Biol. 2003;135:689–96.

Article
CAS
PubMed
Google Scholar

Gerhart J, Kirschner M. Evolution and evolvability. In: Cells, embryos, and evolution. Malden: Blackwell Science; 1997. p. 580–614.

Google Scholar

Reid RGB. Biological emergence: Evolution by natural experiment. Cambridge: MIT Press; 2007.

Google Scholar

Yang AS. Modularity, evolvability, and adaptive radiations: a comparison of the hemi- and holometabolous insects. Evol Dev. 2001;3:59–72.

Article
CAS
PubMed
Google Scholar

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.

Article
CAS
PubMed
Google Scholar