Johnson ML, Gaines MS. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Ann Rev Ecol Syst. 1990;21:449–80.
Article
Google Scholar
Szulkin M, Sheldon BC. Dispersal as a means of inbreeding avoidance in a wild bird population. Proc R Soc Lond B. 2008;275:703–11.
Article
Google Scholar
Duckworth RA, Badyaev AV. Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci U S A. 2007;104:15017–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duckworth RA, Kruuk LEB. Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution. 2009;63:968–77.
Article
PubMed
Google Scholar
Clobert J, Baguette M, Benton TG, Bullock JM. Dispersal ecology and evolution Oxford University press Oxford. 2012.
Book
Google Scholar
Clobert J, Le Galliard L, Cote J, Meylan S, Massot M. Informed dispersal heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett. 2009;12:197–209.
Article
PubMed
Google Scholar
Edelaar P, Bolnick DI. Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol. 2012;27:659–65.
Article
PubMed
Google Scholar
Massot M, Clobert J. Processes at the origin of similarities in dispersal behavior among siblings. J Evol Biol. 2000;13:707–19.
Article
Google Scholar
Cote J, Clobert J. Social personalities influence natal dispersal in a lizard. Proc R Soc Lond B. 2007;274:383–90.
Article
CAS
Google Scholar
Duckworth RA. Maternal effects and range expansion: a key factor in a dynamic process? Phil Trans R Soc B. 2009;364:1075–86.
Article
PubMed
PubMed Central
Google Scholar
Davis JM, Stamps JA. The effect of natal experience on habitat preferences. Trends Ecol Evol. 2004;19:411–6.
Article
PubMed
Google Scholar
Stamps JA, Krishnan VV, Willits NH. How different types of natal experience affect habitat preference. Am Nat. 2009;174:623–30.
Article
PubMed
Google Scholar
Jaenike J, Holt RD. Genetic variation for habitat preference: evidence and explanations. Am Nat. 1991;137:S67–90.
Article
Google Scholar
Doligez B, Gustafsson L, Pärt T. ‘Heritability’ of dispersal propensity in a patchy population. Proc R Soc Lond B. 2009;276:2829–36.
Article
Google Scholar
Edelaar P, Siepielski AM, Clobert J. Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution. 2008;62:2462–72.
Article
PubMed
Google Scholar
Beltman JB, Metz JAJ. Speciation: more likely through a genetic or through a learned habitat preference? Proc R Soc Lond B. 2005;272:1455–63.
Article
CAS
Google Scholar
Berner D, Thibert‐Plante X. How mechanisms of habitat preference evolve and promote divergence with gene flow. J Evol Biol. 2015;28:1641–55.
Article
CAS
PubMed
Google Scholar
Dukas R. Costs of memory: ideas and predictions. J Theor Biol. 1999;197:41–50.
Article
CAS
PubMed
Google Scholar
Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL. Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution. 2009;63:2004–16.
Article
PubMed
Google Scholar
Hansson B, Bensch S, Hasselquist D. Heritability of dispersal in the great reed warbler. Ecol Lett. 2003;6:290–4.
Article
Google Scholar
Greenwood PJ, Harvey PH, Perrins CM. The role of dispersal in the great tit (Parus major): the causes consequences and heritability of natal dispersal. J Anim Ecol. 1979;48:123–42.
Article
Google Scholar
van Noordwijk AJ. Problems in the analysis of dispersal and a critique on its ‘heritability’ in the great tit. J Anim Ecol. 1984;53:533–44.
Article
Google Scholar
Alonso JC, Martín E, Alonso JA, Morales MB. Proximate and ultimate causes of natal dispersal in the great bustard Otis tarda. Behav Ecol. 1998;9:243–52.
Article
Google Scholar
Ekman J, Eggers S, Griesser M. Fighting to stay: the role of sibling rivalry for delayed dispersal. Anim Behav. 2002;64:453–9.
Article
Google Scholar
Cote J, Clobert J, Brodin T, Fogarty S, Sih A. Personality-dependent dispersal: characterization ontogeny and consequences for spatially structured populations. Phil Trans R Soc B. 2010;65:4065–76.
Article
Google Scholar
Piper WH, Palmer MW, Banfield N, Meyer MW. Can settlement in natal-like habitat explain maladaptive habitat selection? Proc R Soc Lond B. 2013;280(1765):20130979.
Article
Google Scholar
Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC. Evolution driven by differential dispersal within a wild bird population. Nature. 2005;433:60–5.
Article
CAS
PubMed
Google Scholar
Camacho C, Canal D, Potti J. Non-random dispersal drives phenotypic divergence within a bird population. Ecol Evol. 2013;3:4841–8.
Article
PubMed
PubMed Central
Google Scholar
Camacho C, Canal D, Potti J. Testing the matching habitat choice hypothesis: phenotype-environment correlation and fitness in a wild bird population. Evol Ecol. 2015;29:873–86.
Article
Google Scholar
Merilä J, Sheldon BC. Avian quantitative genetics. Curr Ornithol. 2001;16:179–255.
Google Scholar
Stinchcombe JR. Cross-pollination of plants and animals: wild quantitative genetics and plant evolutionary genetics. In: Charmantier A, Garant D, Kruuk LEB, editors. Quantitative genetics in the wild. Oxford: Oxford University Press; 2014. p. 128–46.
Chapter
Google Scholar
Postma E, van Noordwijk AJ. Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature. 2005;433:65–8.
Article
CAS
PubMed
Google Scholar
Senar JC, Borrás A, Cabrera J, Cabrera T, Björklund M. Local differentiation in the presence of gene flow in the citril finch Serinus citrinella. Biol Lett. 2006;2:85–7.
Article
PubMed
Google Scholar
Lundberg A, Alatalo RV. The pied flycatcher T. London: AD Poyser; 1992.
Google Scholar
Potti J. Arrival time from spring migration in male pied flycatchers: individual consistency and familial resemblance. Condor. 1998;100:702–8.
Article
Google Scholar
Montalvo S, Potti J. Breeding dispersal in Spanish pied flycatchers Ficedula hypoleuca. Ornis Scand. 1992;23:491–8.
Article
Google Scholar
Potti J, Montalvo S. Return rate age at first breeding and natal dispersal of pied flycatchers Ficedula hypoleuca in central Spain. Ardea. 1991;79:419–28.
Google Scholar
Canal D, Serrano D, Potti J. Exploring heterozygosity-survival correlations in a wild songbird population: contrasting effects between juvenile and adult stages. PLoS One. 2014;9(8):e105020.
Article
PubMed
PubMed Central
Google Scholar
Alatalo RV, Lundberg A. Heritability and selection on tarsus length in the pied flycatcher (Ficedula hypoleuca). Evolution. 1986;40:574–83.
Article
Google Scholar
Potti J, Merino S. Heritability estimates and maternal effects on tarsus length in pied flycatchers Ficedula hypoleuca. Oecologia. 1994;100:331–8.
Article
Google Scholar
Postma E, Den Tex RJ, van Noordwijk AJ, Mateman AC. Neutral markers mirror small‐scale quantitative genetic differentiation in an avian island population. Biol J Linn Soc. 2009;97:867–75.
Article
Google Scholar
Raymond M, Rousset F. Genepop (version 1 2) population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–9.
Google Scholar
Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–70.
Article
Google Scholar
Goudet J. FSTAT (version 1 2): a computer program to calculate F-statistics. J Hered. 1995;86:485–6.
Google Scholar
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. GENETIX 4 05: logiciel sous Windows TM pour la génétique des populations Laboratoire Génome Populations Interactions CNRS UMR 5171: Université de Montpellier II Montpellier France; 2004
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
CAS
PubMed
PubMed Central
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.
Article
Google Scholar
Potti J, Montalvo S. Male arrival and female mate choice in Pied Flycatchers Ficedula hypoleuca in central Spain. Ornis Scand. 1991;22:45–54.
Article
Google Scholar
Smith RJ, Moore FR. Arrival timing and seasonal fitness in a long-distance migratory landbird. Behav Ecol Sociobiol. 2005;57:231–9.
Article
Google Scholar
Becker PH, Dittmann T, Ludwigs JD, Limmer B, Ludwig SC, Bauch C, Braasch A, Wendeln H. Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird. Proc Natl Acad Sci U S A. 2008;105:12349–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Balen JH. Observations on the post-fledging dispersal of the pied flycatcher Ficedula hypoleuca. Ardea. 1979;67:134–7.
Google Scholar
Vysotsky VG, Bardin AV, Sokolov LV. Distance of post-fledging dispersal of the Pied Flycatcher Ficedula hypoleuca. Proc Zool Inst Leningrad. 1990;210:35–45.
Google Scholar
Chernetsov N, Sokolov LV, Kosarev V, Leoke D, Markovets M, Tsvey A, Shapoval AP. Sex-related natal dispersal of pied flycatchers: how far away from home? Condor. 2006;108:711–7.
Article
Google Scholar
Mänd R, Tilgar V, Lõhmus A. Providing nest boxes for hole-nesting birds–does habitat matter? Biodivers Conserv. 2005;14:1823–40.
Article
Google Scholar
Marshall MR, Cooper RJ. Territory size of a migratory songbird in response to caterpillar density and foliage structure. Ecology. 2004;85:432–45.
Article
Google Scholar
Morosinotto C, Thomson RL, Korpimäki E. Habitat selection as an antipredator behaviour in a multi‐predator landscape: all enemies are not equal. J Anim Ecol. 2010;79:327–33.
Article
PubMed
Google Scholar
Doligez B, Danchin E, Clobert J, Gustafsson L. The use of conspecific reproductive success for breeding habitat selection in a non-colonial hole-nesting species the collared flycatcher. J Anim Ecol. 1999;68:1193–206.
Article
Google Scholar
Bates D, Maechler M, Bolker B. lme4: linear mixed-effects models using S4 classes R package version 0 999375–42. 2011.
Google Scholar
Kalinowski ST. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity. 2011;106:625–32.
Article
CAS
PubMed
Google Scholar
Berndt R, Winkel W. Verfrachtungs-Experimente zur Frage der Geburtsortsprägung beim Trauerschnäpper (Ficedula hypoleuca). J Ornithol. 1979;120:41–5.
Article
Google Scholar
Vallin N, Qvarnström A. Learning the hard way: imprinting can enhance enforced shifts in habitat choice. Int J Ecol. 2011;2011:287532.
Article
Google Scholar
Pärt T. The importance of local familiarity and search costs for age-and sex-biased philopatry in the collared flycatcher. Anim Behav. 1995;49:1029–38.
Article
Google Scholar
García-Navas V, Ferrer ES, Sanz JJ, Ortego J. The role of immigration and local adaptation on fine-scale genotypic and phenotypic population divergence in a less mobile passerine. J Evol Biol. 2014;27:1590–603.
Article
PubMed
Google Scholar
Camacho C, Sáez P, Sánchez S, Palacios S, Molina C, Potti J. The road to opportunities: landscape change promotes body size divergence in a highly mobile species. Curr Zool. 2016;62:7–14.
Article
Google Scholar
Fletcher RJ, Robertson EP, Wilcox RC, Reichert BE, Austin JD, Kitchens WM. Affinity for natal environments by dispersers impacts reproduction and explains geographical structure of a highly mobile bird. Proc R Soc Lond B. 2015;282:20151545.
Article
Google Scholar
Kekkonen J, Seppä P, Hanski IK, Jensen H, Väisänen RA, Brommer JE. Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape. Heredity. 2011;106:183–90.
Article
CAS
PubMed
Google Scholar
Procházka P, Stokke BG, Jensen H, Fainová D, Bellinvia E, Fossøy F, Vikan JR, Bryja J, Soler M. Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. J Avian Biol. 2011;42:103–13.
Article
Google Scholar
Burger C, Both C. Translocation as a novel approach to study effects of a new breeding habitat on reproductive output in wild birds. PLoS One. 2011;6(3):e18143.
Article
CAS
PubMed
PubMed Central
Google Scholar