McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Gen Res. 2012;22(4):746–54.
Article
CAS
Google Scholar
Lemmon EM, Lemmon AR. High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Syst. 2013;44:99–121.
Article
Google Scholar
Smith BT, Harvey MG, Faircloth BC, Glenn TC, Brumfield RT. Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Syst Biol. 2013;63:83–95.
Article
PubMed
Google Scholar
Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, et al. The drivers of tropical speciation. Nature. 2014;515:406–9.
Article
CAS
PubMed
Google Scholar
Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett. 2012;8:783–6.
Article
PubMed Central
PubMed
Google Scholar
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst Biol. 2012;61:717–26.
Article
PubMed
Google Scholar
Faircloth BC, Branstetter MG, White ND, Brady SG. Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera. Mol Ecol Res. 2015;15:489–501.
Article
CAS
Google Scholar
Gilbert PS, Chang J, Pan C, Sobel EM, Sinsheimer JS, Faircloth BC, et al. Genome-wide ultraconserved elements exhibit higher phylogenetic informativeness than traditional gene markers in percomorph fishes. Mol Phylogenet Evol. 2015;92:140–6.
Article
PubMed
Google Scholar
Brady SG, Schultz TR, Fisher BL, Ward PS. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci. 2006;103:18172–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: Diversification in the age of angiosperms. Science. 2006;312:101–4.
Article
CAS
PubMed
Google Scholar
Ward PS, Brady SG, Fisher BL, Schultz TR. Phylogeny and biogeography of dolichoderine ants: effects of data partitioning and relict taxa on historical inference. Syst Biol. 2010;59:342–62.
Article
CAS
PubMed
Google Scholar
Brady SG, Fisher BL, Schultz TR, Ward PS. The rise of army ants and their relatives: diversification of specialized predatory doryline ants. BMC Evol Biol. 2014;14:93.
Article
PubMed Central
PubMed
Google Scholar
Schmidt CA, Shattuck SO. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa. 2014;3817:1–242.
Article
CAS
PubMed
Google Scholar
Ward PS, Brady SG, Fisher BL, Schultz TR. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst Ent. 2015;40:61–81.
Article
Google Scholar
Lucky A, Trautwein MD, Guenard BS, Weiser MD, Dunn RR. Tracing the rise of ants-out of the ground. PLoS ONE. 2013;8(12):e84012.
Article
PubMed Central
PubMed
Google Scholar
Moreau CS, Bell CD. Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution. 2013;67:2240–57.
Article
PubMed
Google Scholar
Blaimer BB, Brady SG, Schultz TR, Fisher BL. Functional and phylogenetic approaches reveal the evolution of diversity in a hyper diverse biota. Ecography. 2015;38:901–12.
Article
Google Scholar
Schultz TR, Brady SG. Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci. 2008;105:5435–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK. Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J Evol Biol. 2014;27:242–58.
Article
CAS
PubMed
Google Scholar
Ward PS. The phylogeny and evolution of ants. Annu Rev Ecol Syst. 2014;45:23–43.
Article
Google Scholar
Schmidt JO. Chemistry, pharmacology, and chemical ecology of ant venoms. In: Piek T, editor. Venoms of the Hymenoptera. London: Academic Press; 1986: 425–508
Saporito RA, Garraffo HM, Donnelly MA, Edwards AL, Longino JT, Daly JW. Formicine ants: An arthropod source for the pumiliotoxin alkaloids of dendrobatid poison frogs. Proc Natl Acad Sci. 2004;101:8045–50.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buschinger A. Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News. 2009;12:219–35.
Google Scholar
LaPolla JS, Brady SG, Shattuck SO. Phylogeny and taxonomy of the Prenolepis genus-group of ants (Hymenoptera: Formicidae). Syst Ent. 2010;35:118–31.
Article
Google Scholar
Lapolla JS, Kallal RJ, Brady SG. A new ant genus from the Greater Antilles and Central America, Zatania (Hymenoptera: Formicidae), exemplifies the utility of male and molecular character systems. Syst Ent. 2012;37:200–14.
Article
Google Scholar
Blumenstiel B, Cibulskis K, Fisher S, DeFelice M, Barry A, Fennell T, et al. Targeted exon sequencing by in-solution hybrid selection. Curr Protoc Hum Genet. 2010;Unit 18.4.1–18.4.24, Supplement 66.
Ward PS, Downie DA. The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst Ent. 2005;30:310–35.
Article
Google Scholar
Ward PS, Sumnicht TP. Molecular and morphological evidence for three sympatric species of Leptanilla (Hymenoptera: Formicidae) on the Greek island of Rhodes. Myrmecol News. 2012;17:5–11.
Google Scholar
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. In: Bioinformatics for DNA sequence analysis. Humana Press, New York City; 2009: 39–64
Faircloth B. Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality trimming. 2013. doi: 10.6079/J9ILL
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; btu170:1–7.
Faircloth B. PHYLUCE is a software package for the analysis of conserved genomic loci. 2015. doi:10.6079/J9PHYL
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech. 2011;29:644–52.
Article
CAS
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
Article
CAS
PubMed
Google Scholar
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
PubMed
Google Scholar
Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. The University of Texas at Austin; 2006; accessible at: https://repositories.lib.utexas.edu/handle/2152/2666
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
Article
PubMed Central
PubMed
Google Scholar
Frandsen PB, Calcott B, Mayer C, Lanfear R. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evol Biol. 2015;15:13.
Article
PubMed Central
PubMed
Google Scholar
Townsend JP. Profiling Phylogenetic Informativeness. Syst Biol. 2007;56:222–31.
Article
CAS
PubMed
Google Scholar
Faircloth BC, Chang J, Alfaro ME. TAPIR enables high-throughput estimation and comparison of phylogenetic informativeness using locus-specific substitution models. 2012. arXiv preprint arXiv:12021215.
López-Giráldez F, Townsend JP. PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol. 2011;11:152.
Article
PubMed Central
PubMed
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ree RH, Smith SA. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol. 2008;57:4–14.
Article
PubMed
Google Scholar
Beaulieu JM, Tank DC, Donoghue MJ. A Southern Hemisphere origin for campanulid angiosperms, with traces of the break-up of Gondwana. BMC Evol Biol. 2013;13:80.
Article
PubMed Central
PubMed
Google Scholar
Yu Y, Harris AJ, Blair C, He X. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol Phylogen Evol. 2015;87:46–9.
Article
Google Scholar
Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 2013;62:162–6.
Article
PubMed Central
PubMed
Google Scholar
Makunin IV, Shloma VV, Stephen SJ, Pheasant M, Belyakin SN. Comparison of ultra-conserved elements in Drosophilids and Vertebrates. PLoS ONE. 2013;8:e82362.
Article
PubMed Central
PubMed
Google Scholar
Bolton B. Synopsis and classification of Formicidae. Mem Am Entomol Inst. 2003;71:1–370.
Google Scholar
Whitfield JB, Kjer KM. Ancient rapid radiations of insects: challenges for phylogenetic analysis. Ann Rev Ent. 2008;53:449–72.
Article
CAS
Google Scholar
Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci. 2011;108:5690–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bazinet AL, Cummings MP, Mitter KT, Mitter CW. Can RNA-Seq resolve the rapid radiation of advanced moths and butterflies (Hexapoda: Lepidoptera: Apoditrysia)? An exploratory study. PLoS ONE. 2013; 8(12):e82615.
Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr Biol. 2013;23:2058–62.
Article
CAS
PubMed
Google Scholar
Brady SG, Gadau J, Ward PS. Systematics of the ant genus Camponotus (Hymenoptera: Formicidae): a preliminary analysis using data from the mitochondrial gene cytochrome oxidase I. In: Austin AD, Dowton M, editors. Hymenoptera: evolution, biodiversity and biological control. Canberra: Fourth International Hymenoptera Conference; 2000.
Google Scholar
Chen Z, Zhou S, Ye D, Chen Y, Lu C. Molecular phylogeny of the ant subfamily Formicinae (Hymenoptera, Formicidae) from China based on mitochondrial genes. Sociobiology. 2013;60:135–44.
Article
Google Scholar
Williams LE, Wernegreen JJ. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ. 2015;3:e881.
Article
PubMed Central
PubMed
Google Scholar
Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS. One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol. 2009;9:292.
Article
PubMed Central
PubMed
Google Scholar
Near TJ, Sanderson MJ. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philos Trans R Soc Lond B Biol Sci. 2004;359:1477–83.
Article
PubMed Central
PubMed
Google Scholar
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58:367–80.
Article
PubMed
Google Scholar
Brady SG. Effects of fossil calibration-uncertainty on divergence dating in ants and bees. Am Ent. 2011;57:56.
Article
Google Scholar