Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, et al. Observations: Cryosphere. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, editors. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press; 2013. p. 317–82.
Google Scholar
Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P. Variability of Antarctic sea ice 1979–1998. J Geophys Res. 2002;107:9–19.
Google Scholar
Stammerjohn S, Massom R, Rind D, Martinson D. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys Res Lett. 2012;39:L06501.
Article
Google Scholar
Massom R, Reid P, Stammerjohn S, Raymond B, Fraser A, Ushio S. Change and variability in East Antarctic sea ice seasonality, 1979/80–2009/10. PLoS One. 2013;8(5):e64756. doi:10.1371/journal.pone.0064756.
Article
PubMed Central
PubMed
Google Scholar
Fraser AD, Massom RA, Michael KJ, Galton-Fenzi BK, Lieser JL. East Antarctic landfast sea ice distribution and variability, 2000–08. J Climate. 2012;25:1137–56.
Article
Google Scholar
Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: Projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, editors. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press; 2013. p. 1029–136.
Google Scholar
Smetacek V, Nicol S. Polar ocean ecosystems in a changing world. Nature. 2005;437:362–8.
Article
CAS
PubMed
Google Scholar
Constable AJ, Melbourne-Thomas J, Corney SP, Arrigo KR, Barbraud C, Barnes DK, et al. Climate change and Southern Ocean ecosystems I: How changes in physical habitats directly affect marine biota. Glob Chang Biol. 2014;20:3004–25.
Article
PubMed
Google Scholar
Lewis SL, Maslin MA. Defining the anthropocene. Nature. 2015;519:171–80.
Article
CAS
PubMed
Google Scholar
Trathan P, Ballard G. Adélie penguin. In: Borboroglu PG, Boersma PD, editors. Penguins: Natural history and conservation. Seattle: University of Washington Press; 2013.
Google Scholar
Lynch H, LaRue M. First global census of the Adélie penguin. Auk. 2014;131:457–66.
Article
Google Scholar
Clarke J, Emmerson LM, Otahal P. Environmental conditions and life history constraints determine foraging range in breeding Adélie penguins. Mar Ecol Prog Ser. 2006;310:247–61.
Article
Google Scholar
Emmerson L, Southwell C. Sea ice cover and its influence on Adélie penguin reproductive performance. Ecology. 2008;89:2096–102.
Article
PubMed
Google Scholar
Emmerson L, Pike R, Southwell C. Reproductive consequences of environment-driven variation in Adélie penguin breeding phenology. Mar Ecol Prog Ser. 2011;440:203–16.
Article
Google Scholar
Baroni C, Orombelli G. Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology. 1994;22:23–6.
Article
Google Scholar
Forcada J, Trathan P, Reid K, Murphy E, Croxall J. Contrasting population changes in sympatric penguin species in association with climate warming. Glob Chang Biol. 2006;12:411–23.
Article
Google Scholar
Southwell C, Emmerson L. Large-scale occupancy surveys in East Antarctica discover new Adélie penguin breeding sites and reveal an expanding breeding distribution. Antarct Sci. 2013;25:531–5.
Article
Google Scholar
Kato A, Ropert-Coudert Y, Naito Y. Changes in Adélie penguin breeding populations in Lützow-Holm Bay, Antarctica, in relation to sea-ice conditions. Polar Biol. 2002;25:934–8.
Google Scholar
Ropert-Coudert Y, Kato A, Meyer X, Pellé M, MacIntosh AJ, Angelier F, et al. A complete breeding failure in an Adélie penguin colony correlates with unusual and extreme environmental events. Ecography. 2015;38:111–3.
Article
Google Scholar
Jenouvrier S, Barbraud C, Weimerskirch H. Sea ice affects the population dynamics of Adélie penguins in Terre Adélie. Polar Biol. 2006;29:413–23.
Article
Google Scholar
Tamura T, Williams GD, Fraser AD, Ohshima KI. Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nat Commun. 2012;3:826.
Article
CAS
PubMed
Google Scholar
Dragon A-C, Houssais M-N, Herbaut C, Charrassin J-B. A note on the intraseasonal variability in an Antarctic polynia: Prior to and after the Mertz Glacier calving. J Mar Syst. 2014;130:46–55.
Article
Google Scholar
Raymond B, Lea MA, Patterson T, Andrews-Goff V, Sharples R, Charrassin JB, et al. Important marine habitat off East Antarctica revealed by two decades of multi-species predator tracking. Ecography. 2014;38:121–9.
Article
Google Scholar
Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al. The last glacial maximum. Science. 2009;325:710–4.
Article
CAS
PubMed
Google Scholar
Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science. 2007;317:793–6.
Article
CAS
PubMed
Google Scholar
Millar CD, Subramanian S, Heupink TH, Swaminathan S, Baroni C, Lambert DM. Adélie penguins and temperature changes in Antarctica: a long-term view. Integrative zoology. 2012;7:113–20.
Article
PubMed
Google Scholar
Emslie S, Polito M, Brasso R, Patterson W, Sun L. Ornithogenic soils and the paleoecology of pygoscelid penguins in Antarctica. Quat Int. 2014;352:4–15.
Article
Google Scholar
Li C, Zhang Y, Li J, Kong L, Hu H, Pan H, et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience. 2014;3:27.
Article
PubMed Central
PubMed
Google Scholar
Clucas GV, Dunn MJ, Dyke G, Emslie SD, Levy H, Naveen R, et al. A reversal of fortunes: Climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins. Sci Rep. 2014;4:5024.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert DM, Ritchie PA, Millar CD, Holland B, Drummond AJ, Baroni C. Rates of evolution in ancient DNA from Adélie penguins. Science. 2002;295:2270–3.
Article
CAS
PubMed
Google Scholar
Ritchie PA, Millar CD, Gibb GC, Baroni C, Lambert DM. Ancient DNA enables timing of the Pleistocene origin and Holocene expansion of two Adélie penguin lineages in Antarctica. Mol Biol Evol. 2004;21:240–8.
Article
CAS
PubMed
Google Scholar
Ó Cofaigh C, Davies BJ, Livingstone SJ, Smith JA, Johnson JS, Hocking EP, et al. Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum. Quat Sci Rev. 2014;100:87–110.
Article
Google Scholar
Hodgson DA, Graham AG, Roberts SJ, Bentley MJ, Ó Cofaigh C, Verleyen E, et al. Terrestrial and submarine evidence for the extent and timing of the Last Glacial Maximum and the onset of deglaciation on the maritime-Antarctic and sub-Antarctic islands. Quat Sci Rev. 2014;100:137–58.
Article
Google Scholar
Emslie SD, Coats L, Licht K. A 45,000 yr record of Adélie penguins and climate change in the Ross Sea. Antarctica Geology. 2007;35:61–4.
Article
Google Scholar
Huang T, Sun L, Wang Y, Zhu R. Penguin occupation in the Vestfold Hills. Antarct Sci. 2009;21:131–4.
Article
Google Scholar
Emslie SD, Woehler EJ. A 9000-year record of Adélie penguin occupation and diet in the Windmill Islands, East Antarctica. Antarct Sci. 2005;17:57–66.
Article
Google Scholar
Huang T, Sun L, Wang Y, Liu X, Zhu R. Penguin population dynamics for the past 8500 years at Gardner Island, Vestfold Hills. Antarct Sci. 2009;21:571–8.
Article
Google Scholar
Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, et al. Gene flow on the ice: genetic differentiation among Adélie penguin colonies around Antarctica. Mol Ecol. 2001;10:1645–56.
Article
CAS
PubMed
Google Scholar
Bentley MJ, Ó Cofaigh C, Anderson JB, Conway H, Davies B, Graham AG, et al. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat Sci Rev. 2014;100:1–9.
Article
Google Scholar
Barbara L, Crosta X, Massé G, Ther O. Deglacial environments in eastern Prydz Bay, East Antarctica. Quat Sci Rev. 2010;29:2731–40.
Article
Google Scholar
Mackintosh AN, Verleyen E, O’Brien PE, White DA, Jones RS, McKay R, et al. Retreat history of the East Antarctic Ice sheet since the last glacial maximum. Quat Sci Rev. 2014;100:10–30.
Article
Google Scholar
Denis D, Crosta X, Schmidt S, Carson DS, Ganeshram RS, Renssen H et al. Holocene productivity changes off Adélie Land (East Antarctica). Paleoceanography. 2009; doi:10.1029/2008pa001689.
Kohfeld KE, Le Quéré C, Harrison SP, Anderson RF. Role of marine biology in glacial-interglacial CO2 cycles. Science. 2005;308:74–8.
Article
CAS
PubMed
Google Scholar
Hillenbrand C-D, Cortese G. Polar stratification: A critical view from the Southern Ocean. Palaeogeogr Palaeoclimatol Palaeoecol. 2006;242:240–52.
Article
Google Scholar
Gersonde R, Crosta X, Abelmann A, Armand L. Sea-surface temperature and sea ice distribution of the southern ocean at the EPILOG last glacial maximum—a circum-antarctic view based on siliceous microfossil records. Quat Sci Rev. 2005;24:869–96.
Article
Google Scholar
Crosta X, Denis D, Ther O. Sea ice seasonality during the Holocene, Adélie Land, East Antarctica. Mar Micropaleontol. 2008;66:222–32.
Article
Google Scholar
Gibson JA, Paterson KS, White CA, Swadling KM. Evidence for the continued existence of Abraxas Lake, Vestfold Hills, East Antarctica during the Last Glacial Maximum. Antarct Sci. 2009;21:269–78.
Article
Google Scholar
Hayashi M, Yoshida Y. Holocene raised beaches in the Lützow-Holm Bay region, East Antarctica. Memoirs of National Institute of Polar Research Special issue. 1994;50:49–84.
Google Scholar
Burgess J, Spate A, Shevlin J. The onset of deglaciation in the Larsemann Hills, Eastern Antarctica. Antarct Sci. 1994;6:491–5.
Article
Google Scholar
Gore D, Rhodes E, Augustinus P, Leishman M, Colhoun E, Rees-Jones J. Bunger Hills, East Antarctica: Ice free at the last glacial maximum. Geology. 2001;29:1103–6.
Article
CAS
Google Scholar
Ainley DG. The Adélie penguin: Bellwether of climate change. New York: Columbia University Press; 2002.
Google Scholar
Thatje S, Hillenbrand C-D, Mackensen A, Larter R. Life hung by a thread: Endurance of Antarctic fauna in glacial periods. Ecology. 2008;89:682–92.
Article
PubMed
Google Scholar
Smith JA, Hillenbrand C-D, Pudsey CJ, Allen CS, Graham AG. The presence of polynyas in the Weddell Sea during the Last Glacial Period with implications for the reconstruction of sea-ice limits and ice sheet history. Earth Planet Sci Lett. 2010;296:287–98.
Article
CAS
Google Scholar
Brambati A, Melis R, Quaia T, Salvi G. Late Quaternary climatic changes in the Ross Sea area, Antarctica. In: Gamble JA, Skinner DNB, Henry SA, editors. Antarctica at the close of a millennium. Wellington, New Zealand: Royal Society New Zealand; 2002. p. 359–64.
Google Scholar
Mackensen A, Grobe H, Hubberten H-W, Kuhn G. Benthic foraminiferal assemblages and the d13C-signal in the Atlantic sector of the Southern Ocean: Glacial-to-interglacial contrasts. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L, editors. Carbon cycling in the glacial ocean: Constraints on the ocean’s role in global change. Berlin, Germany: Springer; 1994. p. 105–44.
Sprenk D, Weber M, Kuhn G, Wennrich V, Hartmann T, Seelos K. Seasonal changes in glacial polynya activity inferred from Weddell Sea varves. Clim Past. 2014;10:1239–51.
Article
Google Scholar
Emmerson L, Southwell C. Adélie penguin survival: Age structure, temporal variability and environmental influences. Oecologia. 2011;167:951–65.
Article
PubMed
Google Scholar
Southwell C, Emmerson L, McKinlay J, Newbery K, Takahashi A, Kato A, et al. Spatially extensive standardized surveys reveal widespread, multi-decadal increase in East Antarctic Adélie penguin populations. PLoS ONE. 2015; doi:10.1371/journal.pone.0139877.
Ainley D, Russel J, Jenouvrier S, Woehler E, Lyver PB, Fraser W, et al. Antarctic penguin response to habitat change as Earth’s troposphere reaches 2 °C above preindustrial levels. Ecol Monogr. 2010;80:49–66.
Article
Google Scholar
Anderson R, Ali S, Bradtmiller L, Nielsen S, Fleisher M, Anderson B, et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science. 2009;323:1443–8.
Article
CAS
PubMed
Google Scholar
Mackintosh A, Golledge N, Domack E, Dunbar R, Leventer A, White D, et al. Retreat of the East Antarctic ice sheet during the last glacial termination. Nat Geosci. 2011;4:195–202.
Article
CAS
Google Scholar
Younger J. Contrasting responses to a climate regime change by sympatric meso-predators. In: Palaeoecological changes in populations of Antarctic ice-dependent predators and their environmental drivers. Hobart: University of Tasmania PhD; 2015. p. 59–85.
Google Scholar
Younger JL, Clucas GV, Kooyman G, Wienecke B, Rogers AD, Trathan PN, et al. Too much of a good thing: Sea ice extent may have forced emperor penguins into refugia during the last glacial maximum. Glob Chang Biol. 2015;21:2215–26.
Article
PubMed
Google Scholar
Trucchi E, Gratton P, Whittington JD, Cristofari R, Le Maho Y, Stenseth NC et al. King penguin demography since the last glaciation inferred from genome-wide data. Proceedings of the Royal Society B: Biological Sciences. 2014; doi:10.1098/rspb.2014.0528.
LaRue MA, Ainley DG, Swanson M, Dugger KM, Lyver POB, Barton K et al. Climate change winners: Receding ice fields facilitate colony expansion and altered dynamics in an Adélie penguin metapopulation. PLoS ONE. 2013; doi:10.1371/journal.pone.0060568.
Nicol S, Brierley AS. Through a glass less darkly—new approaches for studying the distribution, abundance and biology of euphausiids. Deep-Sea Res II Top Stud Oceanogr. 2010;57:496–507.
Article
Google Scholar
Atkinson A, Nicol S, Kawaguchi S, Pakhomov E, Quetin L, Ross R, et al. Fitting Euphausia superba into Southern Ocean food-web models: A review of data sources and their limitations. CCAMLR Science. 2012;19:219–45.
Google Scholar
Roeder AD, Ritchie PA, Lambert DM. New DNA markers for penguins. Conserv Genet. 2002;3:341–4.
Article
CAS
Google Scholar
Millar CD, Dodd A, Anderson J, Gibb GC, Ritchie PA, Baroni C, et al. Mutation and evolutionary rates in Adélie penguins from the Antarctic. PLoS Genet. 2008;4:1000209.
Article
Google Scholar
Posada D. jModelTest: Phylogenetic model averaging. Mol Biol Evol. 2008;25:1253–6.
Article
CAS
PubMed
Google Scholar
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.
Article
PubMed
Google Scholar
Heled J, Drummond AJ. Bayesian inference of population size history from multiple loci. BMC Evol Biol. 2008;8:289.
Article
PubMed Central
PubMed
Google Scholar
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10(4):e1003537. doi:10.1371/journal.pcbi.1003537.
Article
PubMed Central
PubMed
Google Scholar
Hasegawa M, Kishino H, Yano T-A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74.
Article
CAS
PubMed
Google Scholar
Wright S. Evolution in Mendelian populations. Genetics. 1931;16:97.
PubMed Central
CAS
PubMed
Google Scholar
Crow J, Kimura M. An introduction to population genetics. Minneapolis: Burgess Publishing Co; 1970.
Google Scholar
Palstra FP, Ruzzante DE. Genetic estimates of contemporary effective population size: What can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol. 2008;17:3428–47.
Article
PubMed
Google Scholar
Ainley DG, LeReseche RE, Sladen WJ. Breeding biology of the Adelie penguin. Berkeley: University of California Press; 1983.
Google Scholar
Drummond AJ, Rambaut A, Shapiro B, Pybus OG. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol. 2005;22:1185–92.
Article
CAS
PubMed
Google Scholar