Trivers RL. Parental investment and sexual selection. In: Campbell B, editor. Sexual selection and the descent of man, 1871–1971. Chicago: Aldine; 1972. p. 136–79.
Google Scholar
Stearns SC. The evolution of life histories. Oxford: Oxford University Press; 1992.
Google Scholar
Kokko H, Jennions MD. Parental investment, sexual selection and sex ratios. J Evol Biol. 2008;21(4):919–48.
Article
PubMed
Google Scholar
Williams GC. Natural selection costs of reproduction and a refinement of Lack's principle. Am Nat. 1966;100(916):687–90.
Article
Google Scholar
Both C, Visser ME. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature. 2001;411(6835):296–8.
Article
CAS
PubMed
Google Scholar
Sinervo B, Licht P. Hormonal and physiological control of clutch size, egg size, and egg shape in side-blotched lizards (Uta-stansburiana) - constraints on the evolution of lizard life histories. J Exp Zool. 1991;257(2):252–64.
Article
CAS
Google Scholar
Ketterson E, Nolan V, Cawthorn M, Parker P, Ziegenfus C. Phenotypic engineering: using hormones to explore the mechanistic and functional bases of phenotypic variation in nature. Ibis. 1996;138:70–86.
Article
Google Scholar
Zera AJ, Harshman LG. The physiology of life history trade-offs in animals. Annu Rev Ecol Syst. 2001;32(1):95.
Article
Google Scholar
Flatt T, Tu MP, Tatar M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. Bioessays. 2005;27(10):999–1010.
Article
CAS
PubMed
Google Scholar
Williams T. Hormones, life-history, and phenotypic variation: opportunities in evolutionary avian endocrinology. Gen Comp Endocrinol. 2012;176:286–95.
Article
CAS
PubMed
Google Scholar
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.
CAS
PubMed
Google Scholar
Love OP, Breuner CW, Vezina F, Williams TD. Mediation of a corticosterone-induced reproductive conflict. Horm Behav. 2004;46(1):59–65.
Article
CAS
PubMed
Google Scholar
Harshman LG, Zera AJ. The cost of reproduction: the devil in the details. Trends Ecol Evol. 2007;22(2):80–6.
Article
PubMed
Google Scholar
Crespi EJ, Williams TD, Jessop TS, Delehanty B. Life history and the ecology of stress: how do glucocorticoid hormones influence life-history variation in animals? Funct Ecol. 2013;27(1):93–106.
Article
Google Scholar
Wingfield JC, Romero LM. Adrenocortical responses to stress and their modulation in free-living vertebrates. In: McEwen BS, Goodman HM, editors. Handbook of physiology; section 7: the endocrine system coping with the environment: neural and endocrine mechanisms. New York: Oxford University Press; 2001. p. 211–34.
Google Scholar
Romero LM, Dickens MJ, Cyr NE. The reactive scope model—A new model integrating homeostasis, allostasis, and stress. Horm Behav. 2009;55(3):375–89.
Article
PubMed
Google Scholar
Wingfield JC, Breuner C, Jacobs J. Corticosterone and behavioral responses to unpredictable events. In: Etches RJ, Harvey S, editors. Avian endocrinology. Bristol: J. Endocrinology Ltd; 1997.
Google Scholar
Landys MM, Ramenofsky M, Wingfield JC. Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol. 2006;148(2):132–49.
Article
CAS
PubMed
Google Scholar
Silverin B. Corticosterone-binding proteins and behavioral effects of high plasma levels of corticosterone during the breeding period in the pied flycatcher. Gen Comp Endocrinol. 1986;64(1):67–74.
Article
CAS
PubMed
Google Scholar
Bonier F, Moore I, Martin P, Robertson R. The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen Comp Endocrinol. 2009;163:208–13.
Article
CAS
PubMed
Google Scholar
Bonier F, Moore IT, Robertson RJ. The stress of parenthood? Increased glucocorticoids in birds with experimentally enlarged broods. Biol Lett. 2011;7(6):944–6.
Article
PubMed Central
PubMed
Google Scholar
Lancaster LT, Hazard LC, Clobert J, Sinervo BR. Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade-offs in r-strategist and K-strategist females. J Evol Biol. 2008;21(2):556–65.
Article
CAS
PubMed
Google Scholar
Crossin G, Trathan P, Phillips R, Gorman K, Dawson A, Sakamoto K, et al. Corticosterone predicts foraging behavior and parental care in macaroni penguins. Am Nat. 2012;180:E31–41.
Article
PubMed
Google Scholar
Ouyang JQ, Muturi M, Quetting M, Hau M. Small increases in corticosterone before the breeding season increase parental investment but not fitness in a wild passerine bird. Horm Behav. 2013;63(5):776–81.
Article
CAS
PubMed
Google Scholar
Bonier F, Martin PR, Moore IT, Wingfield JC. Do baseline glucocorticoids predict fitness? Trends Ecol Evol. 2009;24(11):634–42.
Article
PubMed
Google Scholar
Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD. Corticosterone, testosterone and life-history strategies of birds. Proc R Soc B Biol Sci. 2010;277(1697):3203–12.
Article
CAS
Google Scholar
Lendvai AZ, Bókony V, Angelier F, Chastel O, Sol D. Do smart birds stress less? An interspecific relationship between brain size and corticosterone levels. Proc R Soc B Biol Sci. 2013;280:1770.
Article
Google Scholar
Winkler D, Luo M, Rakhimberdiev E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia. 2013;173(1):129–38.
Article
PubMed Central
PubMed
Google Scholar
Keil C, Röpnack A, Craig GC, Schumann U. Sensitivity of quantitative precipitation forecast to height dependent changes in humidity. Geophys Res Lett. 2008;35(9), L09812.
Article
Google Scholar
Thierry A-M, Massemin S, Handrich Y, Raclot T. Elevated cort levels and severe weather conditions decrease parental investment of incubating Adélie penguins. Horm Behav. 2013;63:475–83.
Article
CAS
PubMed
Google Scholar
Spée M, Marchal L, Lazin D, Le Maho Y, Chastel O, Beaulieu M, et al. Exogenous corticosterone and nest abandonment: a study in a long-lived bird, the Adélie penguin. Horm Behav. 2011;60(4):362–70.
Article
PubMed
Google Scholar
Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Tank A, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clin Res. 2002;19:193–212.
Google Scholar
Barta Z, Houston Alasdair I, McNamara John M, Székely T. Sexual conflict about parental care: the role of reserves. Am Nat. 2002;159(6):687–705.
Article
PubMed
Google Scholar
Schwagmeyer PL, Mock DW, Parker GA. Biparental care in house sparrows: negotiation or sealed bid? Behav Ecol. 2002;13(5):713–21.
Article
Google Scholar
Dakin R, Lendvai AZ, Ouyang JQ, Moore IT, Bonier F. Plumage colour is associated with partner parental care in mutually ornamented tree swallows, Animal behaviour. 2015.
Google Scholar
Hinde CA. Negotiation over offspring care? -a positive response to partner-provisioning rate in great tits. Behav Ecol. 2006;17(1):6–12.
Article
Google Scholar
Pogány Á, Szentirmai I, Komdeur J, Székely T. Sexual conflict and consistency of offspring desertion in Eurasian penduline tit Remiz pendulinus. BMC Evol Biol. 2008;8(1):242.
Article
PubMed Central
PubMed
Google Scholar
Ouyang JQ, Quetting M, Hau M. Corticosterone and brood abandonment in a passerine bird. Anim Behav. 2012;84(1):261–8.
Article
Google Scholar
Székely T. Brood desertion in Kentish Plover Charadrius alexandrinus: an experimental test of parental quality and remating opportunities. Ibis. 1996;138(4):749–55.
Article
Google Scholar
Webb JN, Székely T, Houston AI, McNamara JM. A theoretical analysis of the energetic costs and consequences of parental care decisions. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1419):331–40.
Article
Google Scholar
Butler RW. Population dynamics and migration routes of Tree Swallows, Tachycineta bicolor, in North America. J Field Ornithol. 1988;59:395–402.
Google Scholar
Shutler D, Hussell DJT, Norris DR, Winkler DW, Robertson RJ, Bonier F, et al. Spatiotemporal patterns in nest box occupancy by tree swallows across North America. Avian Conservation Ecology. 2012;7(3).
McCarty JP. The number of visits to the nest by parents is an accurate measure of food delivered to nestlings in Tree Swallows. J Field Ornithology. 2002;73(1):9–14.
Article
Google Scholar
Rose AP. Temporal and individual variation in offspring provisioning by tree swallows: a new method of automated nest attendance monitoring. Plos One. 2009;4(1):e4111.
Article
PubMed Central
PubMed
Google Scholar
Bonier F, Martin PR, Wingfield JC. Maternal corticosteroids influence primary offspring sex ratio in a free-ranging passerine bird. Behav Ecol. 2007;18:1045–50.
Article
Google Scholar
Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118(12):1883–91.
Article
Google Scholar
Fox J. Cox proportional‐hazards regression for survival data, Appendix to an R and S‐plus companion to applied regression. 2002. p. 1–18. http://cran.r-project.org/doc/con-trib/Fox-Companion/appendix-cox-regression.pdf.
Google Scholar
Nur N, Holmes AL, Geupel GR. Use of survival time analysis to analyze nesting success in birds: an example using loggerhead shrikes. Condor. 2004;106(3):457–71.
Article
Google Scholar
Beyersmann J, Schumacher M, Allignol A. Time-dependent covariates and multistate models, Competing risks and multistate models with R. New York: Springer; 2012. p. 211–26. http://www.springerlink.com/index/10.1007/978-1-4614-2035-4_11.
Google Scholar
Burnham KP, Anderson DR. Model selection and multi-model inference: a practical information-theoretical approach. 2nd ed. New York: Springer; 2002.
Google Scholar