Hopkins R, Rausher MD. Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii. Nature. 2011;469:411–4.
Article
CAS
PubMed
Google Scholar
Nosil P. Degree of sympatry affects reinforcement in Drosophila. Evolution. 2012;67:868–72.
Article
PubMed
Google Scholar
Nosil P, Harmon LJ, Seehausen O. Ecological explanations for (incomplete) speciation. Trends Ecol Evol. 2009;24:145–56.
Article
PubMed
Google Scholar
Wu C-I. The genic view of the process of speciation. J Evol Biol. 2001;14:851–65.
Article
Google Scholar
Michel AP, Sim S, Powell THQ, Taylor MS, Nosil P, Feder JL. Widespread genomic divergence during sympatric speciation. Proc Natl Acad Sci U S A. 2010;107:9724–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clarkson CS, Weetman D, Essandoh J, Yawson AE, Maslen G, Manske M, et al. Adaptive introgression between Anopheles sibling species eliminates a major genomic island but not reproductive isolation. Nat Commun. 2014;5:4248.
Article
PubMed Central
CAS
PubMed
Google Scholar
Soria-Carrasco V, Gompert Z, Comeault AA, Farkas TE, Parchman TL, Johnston JS, et al. Stick insect genomes reveal natural selection’s role in parallel speciation. Science. 2014;344:738–42.
Article
CAS
PubMed
Google Scholar
Hubálek Z. Mosquito-borne viruses in Europe. Parasitol Res. 2008;103:29–43.
Article
Google Scholar
Harbach RE, Harrison BA, Gad AM. Culex (Culex) molestus Forskål (Diptera, Culicidae) - neotype designation, description, variation, and taxonomic status. Proc Entomol Soc Wash. 1984;86:521–42.
Google Scholar
Harbach R, Dahl C, White G. Culex (Culex) pipiens Linnaeus (Diptera, Culicidae) - concepts, type designations, and description. Proc Entomol Soc Wash. 1985;87:1–24.
Google Scholar
Vinogradova EB. Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Sofia: Pensoft; 2000.
Google Scholar
Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, et al. Emerging vectors in the Culex pipiens complex. Science. 2004;303:1535–8.
Article
CAS
PubMed
Google Scholar
Gomes B, Sousa CA, Novo MT, Freitas FB, Alves R, Corte-Real AR, et al. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol. 2009;9:262.
Article
PubMed Central
PubMed
Google Scholar
Callot J, Van Ty D. Sur quelques souches françaises de Culex pipiens L. Bull Soc Pathol Exot Filiales. 1943;36:229–32.
Google Scholar
Pasteur N, Rioux JA, Guilvard E, Pech-Perieres J. Nouvelle mention pour le “Midi” méditerranéen, de populations naturelles anautogènes. Ann Parasitol Hum Comp. 1977;11:187–93.
Google Scholar
Gomes B, Kioulos E, Papa A, Almeida APG, Vontas J, Pinto J. Distribution and hybridization of Culex pipiens forms in Greece during the West Nile virus outbreak of 2010. Infect Genet Evol. 2013;16:218–25.
Article
PubMed
Google Scholar
Rizzoli A, Bolzoni L, Chadwick EA, Capelli G, Montarsi F, Grisenti M, et al. Understanding West Nile virus ecology in Europe: Culex pipiens host feeding preference in a hotspot of virus emergence. Parasit Vectors. 2015;8:213.
Article
PubMed Central
PubMed
Google Scholar
Nelms BM, Kothera L, Thiemann T, Macedo PA, Savage HM, Reisen WK. Phenotypic variation among Culex pipiens complex (Diptera: Culicidae) populations from the Sacramento Valley, California: horizontal and vertical transmission of West Nile virus, diapause potential, autogeny, and host selection. Am J Trop Med Hyg. 2013;89:1168–78.
Article
PubMed Central
PubMed
Google Scholar
Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T. An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour. 2008;8:725–35.
Article
CAS
PubMed
Google Scholar
Caballero A, Quesada H, Rolán-Alvarez E. Impact of amplified fragment length polymorphism size homoplasy on the estimation of population genetic diversity and the detection of selective loci. Genetics. 2008;179:539–54.
Article
PubMed Central
PubMed
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.
PubMed Central
CAS
PubMed
Google Scholar
Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6:288–95.
Article
Google Scholar
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91.
PubMed Central
CAS
PubMed
Google Scholar
Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I. Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol. 2002;11:139–51.
Article
CAS
PubMed
Google Scholar
Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a bayesian perspective. Genetics. 2008;180:977–93.
Article
PubMed Central
PubMed
Google Scholar
Fischer MC, Foll M, Excoffier L, Heckel G. Enhanced AFLP genome scans detect local adaptation in high-altitude populations of a small rodent (Microtus arvalis). Mol Ecol. 2011;20:1450–62.
Article
PubMed
Google Scholar
Antao T, Beaumont MA. Mcheza: a workbench to detect selection using dominant markers. Bioinformatics. 2011;27:1717–8.
Article
CAS
PubMed
Google Scholar
Mutebi J-P, Savage HM. Discovery of Culex pipiens pipiens form molestus in Chicago. J Am Mosq Control Assoc. 2009;25:500–3.
Article
PubMed
Google Scholar
Kothera L, Godsey M, Mutebi J-P, Savage HM. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J Med Entomol. 2010;47:805–13.
PubMed
Google Scholar
Paris M, Meyer C-L, Blassiau C, Coissac E, Taberlet P, Després L. Two methods to easily obtain nucleotide sequences from AFLP loci of interest. Methods Mol Biol. 2012;888:91–108.
Article
PubMed
Google Scholar
Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619:246–74.
Article
PubMed
Google Scholar
Weetman D, Wilding CS, Steen K, Pinto J, Donnelly MJ. Gene flow-dependent genomic divergence between Anopheles gambiae M and S forms. Mol Biol Evol. 2012;29:279–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oliveira E, Salgueiro P, Palsson K, Vicente JL, Arez AP, Jaenson TG, et al. High levels of hybridization between molecular forms of Anopheles gambiae from Guinea Bissau. J Med Entomol. 2009;45:1057–63.
Article
Google Scholar
Gompert Z, Lucas LK, Nice CC, Fordyce JA, Forister ML, Buerkle CA. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution. 2012;66:2167–81.
Article
PubMed
Google Scholar
Nadeau NJ, Whibley A, Jones RT, Davey JW, Dasmahapatra KK, Baxter SW, et al. Genomic islands of divergence in hybridizing Heliconius butterflies identified by large-scale targeted sequencing. Philos Trans R Soc Lond B Biol Sci. 2012;367:343–53.
Article
PubMed Central
CAS
PubMed
Google Scholar
Guichoux E, Garnier-Géré P, Lagache L, Lang T, Boury C, Petit RJ. Outlier loci highlight the direction of introgression in oaks. Mol Ecol. 2013;22:450–62.
Article
CAS
PubMed
Google Scholar
Dao A, Adamou A, Yaro AS, Maïga HM, Kassogue Y, Traoré SF, et al. Assessment of alternative mating strategies in Anopheles gambiae: Does mating occur indoors? J Med Entomol. 2008;45:643–52.
PubMed
Google Scholar
Norris DE, Shurtleff AC, Touré YT, Lanzaro GC. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol. 2001;38:336–40.
Article
CAS
PubMed
Google Scholar
Gomes B, Sousa CA, Vicente JL, Pinho L, Calderón I, Arez E, et al. Feeding patterns of molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in a region of high hybridization. Parasit Vectors. 2013;6:93.
Article
PubMed Central
PubMed
Google Scholar
Diabaté A, Dabiré RK, Heidenberger K, Crawford J, Lamp WO, Culler LE, et al. Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation. BMC Evol Biol. 2008;8:5.
Article
PubMed Central
PubMed
Google Scholar
Diabaté A, Dao A, Yaro AS, Adamou A, Gonzalez R, Manoukis NC, et al. Spatial swarm segregation and reproductive isolation between the molecular forms of Anopheles gambiae. Proc R Soc Ser B Biol Sci. 2009;276:4215–22.
Article
Google Scholar
Turner TL, Hahn MW. Genomic islands of speciation or genomic islands and speciation? Mol Ecol. 2010;19:848–50.
Article
PubMed
Google Scholar
Lankinen P, Tyukmaeva VI, Hoikkala A. Northern Drosophila montana flies show variation both within and between cline populations in the critical day length evoking reproductive diapause. J Insect Physiol. 2013;59:745–51.
Article
CAS
PubMed
Google Scholar
Kassim NFA, Webb CE, Russell RC. Is the expression of autogeny by Culex molestus Forskal (Diptera: Culicidae) influenced by larval nutrition or by adult mating, sugar feeding, or blood feeding? J Vector Ecol. 2012;37:162–71.
Article
PubMed
Google Scholar
Bahnck CM, Fonseca DM. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg. 2006;75:251–5.
CAS
PubMed
Google Scholar
Wilding CS, Weetman D, Steen K, Donnelly MJ. Accurate determination of DNA yield from individual mosquitoes for population genomic applications. Insect Sci. 2009;16:361–3.
Article
CAS
Google Scholar
Wilding CS, Butlin RK, Grahame J. Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol. 2001;14:611–9.
Article
CAS
Google Scholar
Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–6.
Article
CAS
PubMed
Google Scholar
Earl DA, VonHoldt BM. Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359–61.
Article
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
PubMed
Google Scholar
Felsenstein J. PHYLIP (phylogeny inference package). Seattle, Washington, USA: Version 3.68. Department of Genome Sciences, University of Washington; 2004.
Google Scholar
Rambaut A. FigTree. Edinburgh, UK: Version 1.3.1. University of Edinburgh; 2009.
Google Scholar
Lynch M, Milligan BG. Analysis of population genetic-structure with RAPD markers. Mol Ecol. 1994;3:91–9.
Article
CAS
PubMed
Google Scholar
Lowry R. VassarStats: web site for statistical computation. 2013. http://vassarstats.net/index.html.
Google Scholar
Beaumont MA, Balding DJ. Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol. 2004;13:969–80.
Article
CAS
PubMed
Google Scholar