Many phylogenetic hypotheses have been proposed for Osmundaceae over the past decades, each differing in terms of the data matrices employed and the taxon relationships obtained [30–34, 37, 54, 55, 65–68]. The evolutionary history of the family is clearly difficult to resolve based on the characters of the extant representatives alone. Several researchers have, thus, urged the incorporation of fossil data to assist phylogenetic reconstructions of Osmundaceae [30, 34, 37, 65] and of ferns in general [59, 60, 69, 70].
In the following sections, we (1) place the new fossil species in the broader context of the Mesozoic–Cenozoic fossil record of Osmundaceae; (2) explain the rationale for the assignment of this and other fossil species to an (initially) extant genus; (3) examine the systematic relationships between Osmunda pulchella and other fossil and extant species of modern Osmundaceae; (4) provide a critical re-evaluation of the evidence for generic separation of Osmundastrum and the paraphyly of Osmunda s.l.; and (5) discuss the critical significance of O. pulchella for the systematic classification and evolutionary history of modern Osmundaceae.
Osmundaceae in the regional fossil flora
Osmunda pulchella sp. nov. is among the earliest fossil Osmunda rhizomes yet known, and the first such find from the Mesozoic of Europe. Whole plants are rarely fossilized, so identification of fossils depends on recognizing diagnostic characters in various dispersed organs. Moreover, some isolated organs can only be identified to taxa under special preservational states (e.g. where anatomical details are retained). Fossil evidence for Osmundaceae occurs in three main forms: (1) permineralized axes with vascular, cortical and petiolar anatomy characteristic of the family; (2) compressions and impressions of foliage (either fertile or sterile); and (3) dispersed spores with sculptural characters typical of fertile macrofossil or extant representatives of the family.
Permineralized osmundaceous axes have a long-ranging and geographically broad fossil record extending back to at least the Permian of both hemispheres [36, 37, 71]. These fossils are highly informative of the anatomical evolution of the group since they preserve the three-dimensional architecture of axial tissues and the surrounding sheath of petioles [30]. They provide further information on osmundacean ecology, since the excavations or coprolites of various invertebrates are commonly preserved within the cortical tissues or petiole sheath [72]. However, occurrences of permineralized axes are generally restricted to sedimentary rocks with a high proportion of volcanogenic components. Free silica and, in some cases, carbonate ions are liberated in particularly high concentrations from the breakdown of glass and unstable calc-silicate minerals, especially in sediments derived from mafic to intermediate volcanic terrains [73]. These ions preferentially link to free hydrogen bonds of holocellulosic complexes in buried plant matter, entombing the original cell walls in opaline silica, quartz, or calcite. The exceptional circumstances of such preservational conditions mean that permineralized osmundaceous stems have a patchy record (see [36] and [74] for summaries of occurrences). Although axes are known from both older (Permian: [26]) and younger (Cenozoic: [28, 75, 76]) rocks in the region, no osmundaceous rhizomes have thus far been reported from the Mesozoic of Europe.
Compressions and impressions of foliage can only be assigned to Osmundaceae with confidence where details of the sori arrangement or sporangial annulus architecture can be resolved [7]. Remains of such fertile fronds are variously assigned to Osmundopsis T.M.Harris, Todites Seward, Anomopteris Brongn., Cacumen Cantrill & J.A.Webb, Cladotheca T.Halle, and Osmunda [7, 77–79] and possibly Damudopteris D.D. Pant & P.K. Khare and Dichotomopteris Maithy [80, 81]. Morphologically similar sterile fronds are typically assigned to Cladophlebis Brongn., although not all forms referred to this fossil genus are necessarily osmundacean. Collectively, the record of fossil osmundacean foliage matches that of the rhizomes, extending from the Permian to Cenozoic and being distributed on all continents [30, 82–85]. Foliage referable to Todites or Cladophlebis is widespread in the Mesozoic of Europe and is extensively represented in Rhaetian to Early Jurassic strata of southern Sweden [86–90].
Spores attributed to Osmundaceae found in situ within fossil sporangia or dispersed within sediments are spherical to triangular and typically bear irregularly arranged grana, bacula or pila of variable form and size. More rarely, the spore surface is scabrate or laevigate. When found dispersed, such spores are most commonly assigned to Osmundacidites Couper, although some have been attributed to Baculatisporites Pflug & P.W.Thomson, Cyclobaculisporites D.C.Bhardwaj, Todisporites Couper, Punctatisporites A.C.Ibrahim, Leiotriletes R.Potonié & Kremp, or Triquitrites L.R.Wilson & E.A.Coe [78]. Such spores match the record of osmundaceous foliage and permineralized axes in ranging from the Permian to present, and occurring in considerable abundance during the Mesozoic [78]. Osmundacidites wellmanii (Couper) Danzé-Corsin & Laveine is one of the dominant spore types recovered from sediments surrounding the fossil rhizome studied herein [62] attesting to the strong representation of this family in the flora of the Korsaröd area during the Pliensbachian. Moreover, Osmundacidites and Baculatisporites species are common elements of palynofloras recovered from the uppermost Triassic to Middle Jurassic strata throughout southern Sweden [91–95], indicating that the family had an important role in the ecology of the herbaceous stratum of the regional mid-Mesozoic vegetation. Osmundaceae underwent a notable decline in both relative diversity and abundance accompanying the rise of the angiosperms in the Cretaceous [96, 97] and this trend appears to have persisted through the Cenozoic resulting in the family’s low representation and, for some genera, relictual distribution today [85].
Assignment to Osmunda
There is no standard rule in palaeontology deciding whether fossil remains can (or should) be assigned to extant genera or species [79, 98, 99]. In each case, this decision must be taken individually after careful evaluation of the completeness of preservation (i.e. the degree of comparability with extant taxa) and of the diagnostic significance of the preserved morphological characters available for comparison.
Historically, permineralized rhizomes similar to those of extant Osmundaceae have been routinely placed in fossil genera, such as Osmundites Unger [27, 28, 100]. Based on a comparative study of fossil rhizomes and extant taxa, however, Chandler [75] concluded that Osmundites dowkeri Carruth. from the Paleocene of England can be undoubtedly assigned to Osmunda subgenus Plenasium. Chandler’s rationale has since served as a precedence for subsequent authors to place other Paleogene, Neogene, and—more recently—also Triassic to Cretaceous fossils of Osmundaceae in genera originally defined for extant species [29, 30, 63, 65, 66, 101–104]. Finally, well-preserved permineralized rhizomes from the Upper Cretaceous of Canada that are strikingly similar to those of modern Osmunda cinnamomea have led the authors to even identify a particular extant species in the Mesozoic fossil record [64]. These assignments and new combinations have been adopted in every subsequent systematic treatment of fossil Osmundaceae [7, 36, 37]. Therefore, the identification of extant genera and species of Osmundaceae even in the Mesozoic fossil record is a universally accepted practice, providing the fossils show sufficient diagnostic detail to warrant affiliation with their extant relatives. Fossils that have structural features unknown among modern taxa are, by contrast, usually placed in more or less narrowly defined fossil taxa, such as Palaeosmunda R.E.Gould, Osmundacaulis C.N.Mill. emend. Tidwell, or Aurealcaulis Tidwell & L.R.Parker [7, 36, 71]. The remaining osmundoid fossil rhizomes that cannot be positively assigned to any of these natural groups continue to be placed in the rather broadly defined fossil taxon Millerocaulis Tidwell emend. E.I.Vera (including the formerly separated Millerocaulis Tidwell emend. Tidwell and Ashicaulis Tidwell) [7, 36, 37, 105].
The calcified osmundaceous rhizome described here contains all anatomical features diagnostic of Osmunda [11, 30]: (1) ectophloic-dictyoxylic siphonostele with complete leaf gaps; (2) thin parenchymatic inner cortex and distinctly thicker, homogeneous, fibrous outer cortex; (3) heterogeneous sclerenchyma cylinders in the petiole bases; and (4) sclerenchyma fibres in the stipular wings of the petiole. It shares an ample number of characters with subgenera Osmundastrum and Osmunda sensu Miller, but is markedly distinct from subgenus Plenasium [29, 30]. The rather high degree of stele dissection and the distant point of initial bifurcation of leaf-trace protoxylem are typical of Osmundastrum and O. claytoniana [29, 30]; finally, the presence of usually a single root per leaf trace together with the development of (ultimately) one abaxial arch and two lateral masses of thick-walled fibres in the petiole sclerenchyma ring render the new species particularly similar to subgenus Osmundastrum [29, 30]. Since the fossil differs from extant species merely in specific diagnostic characters, we have no hesitation in assigning it to Osmunda in accordance with conventional practice [29, 30, 36, 63, 75, 101].
By analogy, the same basic similarity also applies to at least five of the >25 fossil species currently included in Millerocaulis sensu Vera and Ashicaulis, which are all characterized by having heterogeneous sclerenchyma rings in the petioles: M. liaoningensis [106], A. claytoniites [107], A. plumites [108], and A. wangii [109]—all from the Jurassic of China—and M. johnstonii from Tasmania [110], which we, therefore, included in our phylogenetic analyses. The holotype of the last of these species was collected from a gravel pit; following Tidwell et al. [110], we consider the age of this specimen to be likely concordant with those of other Mesozoic permineralized fern stems from eastern Tasmania, which have recently been dated as Early Jurassic [111].
Systematic placement of fossil Osmunda rhizomes among modern Osmundaceae
Phylogenetic network analysis
Relationships among extant species in the distance network based on our morphological matrix are congruent with those of molecular phylogenetic analyses [31, 32], confirming that the morphological matrix based on rhizome anatomy serves well in resolving systematic relationships among modern Osmundaceae. The only major exception is expressed by O. claytoniana, which, together with extant species of subgenus Osmunda sensu Yatabe et al. and Paleogene and Neogene fossils, forms a group essentially consistent with subgenus Osmunda sensu Miller.
The Jurassic taxa included in our analysis, including O. pulchella, form a broad box-like structure that bridges the gap between the relatively derived Osmundastrum and the less derived Osmunda subgenus Osmunda sensu Miller (Fig. 8). Their long terminal branches are due to unique trait combinations intermediate between their more derived fossil and extant relatives. Collectively, the Jurassic species probably represent ancestral forms of Osmunda s.l., some being more similar to O. cinnamomea (O. pulchella) and others to subgenus Osmunda sensu Miller (e.g. A. wangii).
Overall, the placement of the other fossil taxa accords well with the basic assumption that they should be less derived—and thus placed closer to the centre of the network—than their extant relatives. However, there is one major exception: O. dowkeri from the Paleogene is the furthest-divergent (i.e. most derived) of all fossil and extant species in the Plenasium group. This relates to its unusually complex stele organization, which is highly dissected and contains by far the largest number of xylem segments of all species analysed (exceeding 30, compared to less than 12 in all other Plenasium and less than 20 in most other Osmunda).
Notably, a subdivision into two putatively monophyletic subgenera Osmunda sensu Yatabe et al. and Claytosmunda generates two taxa without discriminating anatomical and morphological features (potential aut- or synapomorphies according to Hennig [112]). Miller’s paraphyletic subgenus Osmunda accommodates the fossil taxa, whereas the concept of Osmunda proposed by Yatabe et al. [31, 45] precludes infrageneric classification of most fossil species (Fig. 8).
Compatibility with vegetative morphology
The systematic relationships revealed from our analysis of anatomical characters of the rhizomes reflect the distribution of gross morphological and fertile features within Osmundaceae very well. The isolated position and tight clustering of subgenus Plenasium, for instance, finds support through morphological data in the form of its invariant, unique frond morphology: unlike any other modern Osmundaceae, all extant Plenasium species are characterized by having invariably simple-pinnate and hemi-dimorphic fronds. The rather wide dispersion of the (paraphyletic) subgenus Osmunda Miller is congruent with the variable frond morphology and dimorphism in this group, ranging from pinnate–pinnatifid [e.g. O. claytoniana (similar to O. cinnamomea)] to fully bipinnate and from fully to variably hemi-dimorphic.
The only major topology where anatomical data alone probably fail to generate a realistic divergence distance occurs in the branch including Todea and Leptopteris. These genera, having a rhizome structure broadly similar to that of Osmunda and especially Osmundastrum [11] (but see Fig. 8), are characterized by unique vegetative and fertile characters (e.g. isomorphic fronds; tripinnate fronds, arborescent habit, and lack of stomata in Leptopteris) that differentiate them very clearly from Osmunda s.l.
Integrating fossil species into the molecular backbone topology
Overall, the results of the EPA provide good support regarding the relationships between fossil and extant taxa (compare Figs. 8 and 9). However, notable ‘position swaps’ occur between the placements obtained from different weighting methods of several taxa, including Osmunda pulchella. This incongruence is due to intermediate character combinations inherent to ancestral taxa, which we interpret to result in ‘least conflicting’ placements at varying root positions; the EPA is designed to optimize the position of a query taxon within a pre-defined backbone topology. Because O. pulchella and other fossil taxa have character combinations of genetically distant taxa, the model-based weights in particular will down-weigh the relevant characters. Maximum parsimony has a much more naïve approach in this respect, which may help achieve a more plausible placement of the fossils. Nevertheless, the fact that this down-weighting results in a placement close to the roots, but not in the tips of sub-trees, indicates that the remaining character suite is plesiomorphic in general, thus supporting the interpretation of fossil taxa such as O. pulchella as ancestors of extant clades and possibly individual species (Figs. 8 and 9).
Summary
Altogether, the results detailed above lead us to the following conclusions about the systematic and phylogenetic placements of fossil species among modern Osmundaceae:
-
(1)
The Jurassic Osmunda pulchella is an ancestral member of Osmunda s.l. combining diagnostic features both of Osmunda s.str. and of Osmundastrum.
-
(2)
Other species reported from the Jurassic, together with O. pluma (Paleogene) and O. wehrii (Neogene), are representatives of the (paraphyletic) subgenus Osmunda sensu Miller, including potential ancestors of extant species of subgenus Osmunda and Claytosmunda.
-
(3)
Osmunda oregonensis (Paleogene) is closely allied with subgenus Osmunda sensu Yatabe et al. (see [30]).
-
(4)
Osmunda arnoldii and O. dowkeri belong to subgenus Plenasium and are closely similar to O. banksiifolia; the highly derived O. dowkeri represents the highest degree of specialization in the subgenus, which is supposed to have reached its heyday in distribution and diversity during the Paleogene [30].
-
(5)
A close systematic relationship of extant and all fossil Osmundastrum is unambiguous, despite their wide stratigraphic age-span (Cretaceous, Paleogene, and Neogene) and ‘trans-Pacific’ geographic distribution. It is interesting to note, however, that the rhizomes of O. cinnamomea show a far greater disparity in anatomical characters than all other subgenera and even genera of modern Osmundaceae, indicating the existence of probably more than just a single Osmundastrum species in the past (Fig. 8).
-
(6)
Osmunda iliaensis and O. shimokawaensis are most likely representatives of that species complex of subgenus Osmunda that is today restricted to East Asia (i.e. O. lancea and O. japonica); O. shimokawaensis may be ancestral to O. japonica and O. lancea.
-
(7)
the Early Cretaceous Todea tidwellii may be as related to modern Leptopteris as it is to Todea.
Re-evaluation of the Generic Status of Osmundastrum
The intermediate character combination and the resulting systematic placement of Osmunda pulchella and other Jurassic species between Osmundastrum and subgenus Osmunda Miller challenges the current treatment of Osmundastrum as a separate genus. In the following section, therefore, we provide a detailed re-evaluation of the sum of evidence that has been used to invoke generic separation of Osmundastrum. We begin with what is perhaps considered the most novel and reliable body of evidence—molecular data—and continue with additional evidence from morphological, anatomical, and hybridization studies.
Molecular data
The comprehensive multi-locus phylogeny of Metzgar et al. [32] has recently been interpreted to fully support a separate generic status of Osmundastrum as suggested earlier by Yatabe et al. [31]. Inter-generic and inter-subgeneric ingroup-only relationships based on the molecular matrix employed by Metzgar et al. (reproduced here in Fig. 10) indeed receive nearly unambiguous support from the concatenated gene matrix.
Our analysis of the root-placement stability, however, revealed that the paraphyletic status of Osmunda s.l. inferred from the results of Metzgar et al. [32] is not unambiguously supported by all gene regions (Fig. 10). Whereas this scenario indeed receives strong support from the two coding regions (rbcL-gene, atpA-gene), the molecular data matrix also yields a strong conflicting signal from three relatively conserved spacer sequences (i.e. atpB-rbcL, rbcL-accD, and trnL-trnF) that indicates an alternative root placement between Leptopteris–Todea and the remaining Osmunda s.l. This latter signal offers an equally valid interpretation that would resolve Osmunda s.l. as monophyletic.
The root-placement problem may be due in part to the insufficiently comprehensive selection of out-group taxa, which is limited to four samples of leptosporangiate ferns in the matrix of Metzgar et al. [32]: Matonia pectinata R.Br. (Matoniaceae), Dipteris conjugata Reinw. (Dipteridaceae) and Gleicheniella pectinata (Willd.) Ching and Diplopterygium bancroftii (Hook.) A.R.Sm. (Gleicheniaceae)—all members of Gleicheniales. Current fern phylogenies indicate that Osmundaceae represent the earliest-diverged group in the Polypodiopsida, which include five other extant orders apart from Gleicheniales (see e.g. [1, 2, 4]). We anticipate that a less ambiguous molecular signal may be obtained by the selection of a more comprehensive range of outgroup taxa, including representatives from all major lineages within the Polypodiopsida (in particular Hymenophyllales and Schizaeales) and the sister clades of this class (Equisetopsida and Marattiopsida). Comprehensive sampling of slowly evolving nuclear genes (see e.g. [67, 68]) for the ingroup and outgroup may help to identify outgroup-inflicted branching artefacts in the current plastid-sequence-based topology. Because representatives of Gleicheniales are relatively derived in comparison to Osmundales, they may inflict outgroup long-branch attraction with Osmundastrum [see Additional file 2: Figure. S1 (note the long terminal edge bundles) and S2 in ESA].
Anatomy
Rhizomes of extant O. cinnamomea have several peculiar and supposedly unique characters, including (1) the common occurrence of an internal endodermis; (2) the rare occurrence of a dissected, ectophloic to amphiphloic stele; (3) bifurcation of the protoxylem bundle only as the leaf trace enters the petiole base; (4) the sclerenchyma ring of a petiole base containing one abaxial and two lateral masses of thick-walled fibres; (5) usually single, rarely paired roots arising from the leaf traces; and (6) a patch of sclerenchyma adaxial to each leaf trace in the inner cortex (e.g., [11, 30]).
The first two characters occur inconsistently in extant individuals, and are notably absent in fossil (Cretaceous to Neogene) representatives of Osmundastrum [29, 30, 64], suggesting that these might represent recently acquired traits [30]. Moreover, dissected steles and dictyosteles, with either two endoderms or two phloem layers connecting through a leaf gap, are conditions only rarely and inconsistently developed below incipient rhizome bifurcations [8, 9, 11]. The significance of both characters as diagnostic features of Osmundastrum is thus questionable.
The point of protoxylem bifurcation and the distribution of patches of thick-walled fibres in the petiole sclerenchyma ring are consistent and arguably appropriate diagnostic characters of Osmundastrum. However, among the remaining Osmunda s.l. species, these same characters are regarded as diagnostic only at specific or subgeneric rank [30]. Thus, it would seem inconsistent to afford greater taxonomic weight to these characters in the delimitation of Osmundastrum alone.
Roots typically arising singly is a useful character discriminating Osmundastrum and Osmunda pulchella from the remaining Osmunda, although this feature is inconsistent and may be difficult to observe [11, 30]. The occurrence of sclerenchyma patches adaxial to the leaf traces in the inner stem cortex is the only invariant and unique character of Osmundastrum that we consider might validate its separation beyond species level. Apart from Osmundastrum, this feature occurs also in Todea but not in its sister genus Leptopteris [30].
Morphology
Morphological features commonly regarded as diagnostic of Osmundastrum include (1) generally complete frond dimorphism; (2) pinnate–pinnatifid frond architecture; and (3) dense abaxial trichomes on pinna rachides [32]. However, using frond architecture and dimorphism as a strict diagnostic character has been shown to be problematic (e.g. [11]). Pinnate fronds with deeply pinnatifid segments occur in both O. (Osmundastrum) cinnamomea and O. (Claytosmunda) claytoniana. Moreover, some common varieties and growth forms of O. cinnamomea produce only hemi-dimorphic fronds [113–116], some having apical fertile portions resembling those of O. regalis (see, e.g. [114, 117, 118]) and others having intermittent fertile portions like those of O. claytoniana (see, e.g. [114, 119]). Further, completely dimorphic fronds are also predominant in O. lancea, common in O. japonica, and sporadic in O. regalis ([11, 120]). Significantly, such ranges of variation are encountered only in the species complex including Osmundastrum and Osmunda subgenus Osmunda Miller (= subgenera Claytosmunda and Osmunda Yatabe et al.).
Finally, fronds of all Osmunda s.l. species emerge with a more-or-less dense abaxial indumentum and differ merely in the duration to which the trichome cover is retained in the course of frond maturation [11]. In fully mature fronds of all species considered, most of the hair cover is ultimately lost, with O. cinnamomea [especially O. cinnamomea var. glandulosa Waters [121, 122] merely tending to retain greater amounts of hairs than O. claytoniana, and those in turn more than other species [11]. In summary, we follow Hewitson [11] in arguing that none of these morphological features provide consistent and reliable diagnostic characters for separating Osmundastrum from subgenus Osmunda Miller.
Hybridization
Metzgar et al. ([32] p. 34) suggested that the existence of hybrids can be used to decide about the elevation of subgenera to generic ranks. Numerous natural hybrids, intra- and inter-subgeneric, are known to occur in Osmunda s.str.: O. × ruggii R.M.Tryon in eastern North America (O. regalis × O. claytoniana; [49, 51]), O. × mildei C.Chr. in southern China (O. japonica × O. vachellii Hook.; [123, 124]), O. × hybrida Tsutsumi, S.Matsumoto, Y.Yatabe, Y.Hiray. & M.Kato in Southeast Asia (O. regalis × O. japonica; [68]), and O. × intermedia (Honda) Sugim. (O. japonica × O. lancea) and O. × nipponica Makino (O. japonica × ?O. claytoniana) in Japan [23, 67, 124]. The apparent absence of naturally occurring hybrids involving Osmundastrum has been interpreted to result from its particularly isolated position within Osmunda s.l. [29, 30]. However, Klekowski [50] conducted artificial breeding experiments and readily succeeded in producing viable hybrid sporophytes from O. cinnamomea × O. claytoniana and O. cinnamomea × O. regalis, with equal or even higher yields (1 out of 8 and 2 out of 9, respectively) compared to O. claytoniana × O. regalis (1 out of 8). In addition, some authors suspect that there may also be natural hybrids between O. cinnamomea and Osmunda s. str. (see [67]). So far, there is no record of hybridisation between Leptopteris-Todea and Osmunda s.l. either ex situ or in situ (e.g., from southern Africa, where the geographic ranges of Osmunda and Todea overlap [125]).
Summary
We find that neither molecular, anatomical, morphological, nor hybridization studies have yet succeeded in providing unequivocal evidence that would warrant separate generic status of O. cinnamomea, reject an (inclusive) common origin of Osmundastrum and Osmunda s.str., or else identify an (inclusive) common origin of Leptopteris-Todea and Osmunda s.str. Rather we argue that the sum of evidence for extant taxa detailed above allows for two equally valid hypotheses: the ‘paraphyletic-Osmunda scenario’ [31, 32] and an alternative ‘monophyletic-Osmunda scenario’ [30].
The impact of Osmunda pulchella on the classification of modern Osmundaceae
The phylogenetic placement of Osmunda pulchella is critical to the systematic classification of modern Osmundaceae (Figs. 11, 12). In the specified topology of the ‘paraphyletic Osmunda scenario’, most parsimonious placement of O. pulchella is at the base of the tree, at the root of either Osmundastrum or of the remaining Todea-Leptopteris-Osmunda s.str. clade (Fig. 11). If this phylogenetic scenario is followed, and if only holophyletic groups are considered valid taxonomic units (see, e.g., [126, 127] for critical discussion), then it follows that all modern Osmundaceae need be included in one genus Osmunda, with Plenasium, Osmunda, Claytosmunda, Osmundastrum, Todea, and Leptopteris being infrageneric taxa (Fig. 12). Alternatively, the ‘four-genus classification’ proposed by Yatabe et al. and Metzgar et al. could of course also be maintained under the ‘paraphyletic Osmunda scenario’ if fossil taxa were to be excluded from systematic classification as a whole (Fig. 12). We expect, however, that such practice would be broadly met with criticism from palaeobiologists and neontologists (see e.g. [59, 60, 69, 70]); in the present study, it would be particularly ignorant not to place the new fossil in a systematic context given that it fully agrees with the circumscription of an extant genus that is diagnosed by a considerable number of informative anatomical characters.
If, by contrast, the specified topology of the ‘monophyletic Osmunda scenario’ is followed, in which the most parsimonious placement of O. pulchella is as sister to O. cinnamomea at the base of an Osmundastrum-Osmunda s.str. clade (Fig. 11), then all fossil and extant species of modern Osmundaceae can be resolved in three mutually monophyletic genera: Todea, Leptopteris, and Osmunda, the last of these including the subgenera Plenasium, Osmunda, Claytosmunda, and Osmundastrum (Fig. 12).
In our opinion, this latter option integrates the apparently conflicting evidence from studies of the morphology, anatomy, molecular data, and fossil record of Osmundaceae in a much more realistic and elegant way, and offers a more practical taxonomic solution. We, therefore, argue that Osmunda pulchella described here exposes the recently established paraphyly of Osmunda s.l. as a result of a sampling or reconstruction artefact in the molecular matrix employed. A broader outgroup selection and more comprehensive gene sampling (e.g. including nuclear genes) may resolve the root of Osmundaceae more reliably in the future, providing a molecular data set can be assembled that is immune to outgroup long-branch attraction.
Evolutionary significance of fossil Osmunda rhizomes
Grimm et al. [34] recently used the rhizome fossils and molecular data studied herein together with an additional set of 17 frond fossils to infer divergence ages for the major splits within modern Osmundaceae. Among several tests, the authors employed a ‘fossilized-birth-death’ (FBD) Bayesian dating approach in which only the frond fossils were used for the calibration of age-distribution priors. The results of this test provide an independent temporal framework [34: supplement] that can be used to assess the evolutionary significance of fossil Osmunda rhizomes (Fig. 13).
Calibrated using only frond fossils, the FBD approach dated the split between Osmundastrum and the remaining Osmunda as being older than mid-Late Triassic. Consequently, Jurassic rhizomes with intermediate or plesiomorphic anatomy represent either precursors or extinct sister lineages of extant clades within Osmunda s.l. With its Early Jurassic age and its intermediate anatomical character suite, O. pulchella emerges as an ideal candidate for a true precursor of subgenus Osmundastrum (Fig. 13a), which became established in its present form by the Late Cretaceous (Fig. 13g). The other Jurassic rhizomes have plesiomorphic character suites shared with all remaining Osmunda, but lack the apomorphic states that are characteristic of the highly specialized subgenus Plenasium (Fig. 13b–e). This is in consonance with the mid-Cretaceous root age inferred for Plenasium, which predates the occurrence of the oldest known Plenasium rhizome fossils by at least 30 million years (Fig. 13j, k). In most other cases, the estimated divergence ages also predate the earliest rhizome fossils with lineage-specific characters, as would be expected. One conflict occurs in the seemingly precocious appearance of O. shimokawaensis (Fig. 13q), which our analyses identify as a precursor of the two East Asian Osmunda species, in the late middle Miocene (12–14 million years ago). According to the FBD dating calibrated via frond fossils, the split between these two species (O. lancea and O. japonica) and O. regalis occurred less than 10 million years ago. However, this conflict can be explained by the species-level molecular data used in the dating, which mask the substantial intraspecific genetic disparity between New-World and Old-World populations of O. regalis [68].
Finally, it needs to be pointed out that—following the evidence gathered and presented here—Grimm et al. [34] did not employ both rooting scenarios in their dating. However, during earlier stages of that study, preliminary dating analyses were performed for each of the two different rooting scenarios, using a dirichlet probability prior (DPP) model and including oldest fossils as minimum age constraints for the hypothetical most-recent common ancestors of extant taxa (Additional file 3). Dating using the DPP model shares the basic principles of FBD dating, except that fossils are used in the traditional way as node-height constraints. The results showed that the choice of the rooting scenario is largely irrelevant to the estimated subsequent divergence ages. Thus, even if future studies should produce more comprehensive and better-substantiated evidence in favour of a paraphyletic rooting scenario over the monophyletic scenario, O. pulchella would still remain a likely member of the Osmundastrum lineage.