Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol. 2010;213(Pt 24):4125–36.
Article
PubMed Central
PubMed
Google Scholar
Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.
Article
CAS
PubMed
Google Scholar
To KK, Huang LE. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J Biol Chem. 2005;280(45):38102–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko ZN, Xie K, et al. The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol. 2002;22(6):1734–41.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stapley J, Reger J, Feulner PG, Smadja C, Galindo J, Ekblom R, et al. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):705–12.
Article
PubMed
Google Scholar
Ekblom R, Galindo J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity (Edinb). 2011;107(1):1–15.
Article
CAS
Google Scholar
Qiu Q, Zhang G, Ma T, Qian W, Wang J, Ye Z, et al. The yak genome and adaptation to life at high altitude. Nat Genet. 2012;44(8):946–9.
Article
CAS
PubMed
Google Scholar
Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, et al. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nat Genet. 2013;45(12):1431–8.
Article
CAS
PubMed
Google Scholar
Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun. 2013;4:2071.
PubMed
Google Scholar
Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 2013;4:2433.
PubMed Central
PubMed
Google Scholar
Wang GD, Fan RX, Zhai W, Liu F, Wang L, Zhong L, et al. Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the tibetan plateau. Genome Biol Evol. 2014;6(8):2122–8.
Article
PubMed
Google Scholar
Malik A, Korol A, Weber M, Hankeln T, Avivi A, Band M. Transcriptome analysis of the spalax hypoxia survival response includes suppression of apoptosis and tight control of angiogenesis. BMC Genomics. 2012;13:615.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheviron ZA, Connaty AD, McClelland GB, Storz JF. Functional genomics of adaptation to hypoxic cold-stress in high-altitude deer mice: transcriptomic plasticity and thermogenic performance. Evolution. 2014;68(1):48–62.
Article
PubMed Central
PubMed
Google Scholar
Cheviron ZA, Bachman GC, Connaty AD, McClelland GB, Storz JF. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice. Proc Natl Acad Sci U S A. 2012;109(22):8635–40.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheviron ZA, Whitehead A, Brumfield RT. Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient. Mol Ecol. 2008;17(20):4556–69.
Article
CAS
PubMed
Google Scholar
Jin YT, Brown RP. Species history and divergence times of viviparous and oviparous Chinese toad-headed sand lizards (Phrynocephalus) on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol. 2013;68(2):259–68.
Article
PubMed
Google Scholar
Guo X, Wang Y. Partitioned Bayesian analyses, dispersal-vicariance analysis, and the biogeography of Chinese toad-headed lizards (Agamidae: Phrynocephalus): a re-evaluation. Mol Phylogenet Evol. 2007;45(2):643–62.
Article
CAS
PubMed
Google Scholar
Zhu L, Liao P, Tong H, Jin Y. The complete mitochondrial genome of the subspecies, Phrynocephalus erythrurus parva (Reptilia, Squamata, Agamidae), a toad-headed lizard dwell at highest elevations of any reptile in the world. Mitochondrial DNA 2014.
Jin Y. Evolutionary studies of Phrynocephalus (Agamidae) on the Qinghai–Xizang (Tibetan) Plateau. Ph. D. Thesis. Lanzhou University, Lanzhou (in Chinese with English abstract); 2008.
Tang X, Xin Y, Wang H, Li W, Zhang Y, Liang S, et al. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One. 2013;8(8), e71976.
Article
PubMed Central
CAS
PubMed
Google Scholar
He J, Xiu M, Tang X, Wang N, Xin Y, Li W, et al. Thermoregulatory and metabolic responses to hypoxia in the oviparous lizard, Phrynocephalus przewalskii. Comp Biochem Physiol A Mol Integr Physiol. 2013;165(2):207–13.
Article
CAS
PubMed
Google Scholar
Yang W, Qi Y, Bi K, Fu J. Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: a comparative transcriptomic analysis of two ranid frogs. Rana chensinensis and R kukunoris BMC Genomics. 2012;13:588.
Article
CAS
Google Scholar
Chiari Y, Cahais V, Galtier N, Delsuc F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 2012;10:65.
Article
PubMed Central
PubMed
Google Scholar
Kumazawa Y. Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene. 2007;388(1–2):19–26.
Article
CAS
PubMed
Google Scholar
Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol. 2005;328(10–11):1000–8.
Article
CAS
PubMed
Google Scholar
Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 2013;13:93.
Article
PubMed Central
PubMed
Google Scholar
Hittinger CT, Johnston M, Tossberg JT, Rokas A. Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life. Proc Natl Acad Sci U S A. 2010;107(4):1476–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lin GH, Wang K, Deng XG, Nevo E, Zhao F, Su JP, et al. Transcriptome sequencing and phylogenomic resolution within Spalacidae (Rodentia). BMC Genomics. 2014;15:32.
Article
PubMed Central
PubMed
Google Scholar
Nabholz B, Jarvis ED, Ellegren H. Obtaining mtDNA genomes from next-generation transcriptome sequencing: a case study on the basal Passerida (Aves: Passeriformes) phylogeny. Mol Phylogenet Evol. 2010;57(1):466–70.
Article
CAS
PubMed
Google Scholar
Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol. 2007;69:145–70.
Article
CAS
PubMed
Google Scholar
Yee Koh M, Spivak-Kroizman TR, Powis G. HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci. 2008;33(11):526–34.
Article
PubMed
Google Scholar
He J, Xiu M, Tang X, Yue F, Wang N, Yang S, et al. The different mechanisms of hypoxic acclimatization and adaptation in Lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau. J Exp Zool A Ecol Genet Physiol. 2013;319(3):117–23.
Article
CAS
PubMed
Google Scholar
Svobodova AR, Galandakova A, Sianska J, Dolezal D, Lichnovska R, Ulrichova J, et al. DNA damage after acute exposure of mice skin to physiological doses of UVB and UVA light. Arch Dermatol Res. 2012;304(5):407–12.
Article
CAS
PubMed
Google Scholar
Huey RB. Temperature, physiology, and the ecology of reptiles. Biology of the Reptilia. 1982;12:25–91.
Google Scholar
Pavlidis P, Jensen JD, Stephan W, Stamatakis A. A critical assessment of storytelling: gene ontology categories and the importance of validating genomic scans. Mol Biol Evol. 2012;29(10):3237–48.
Article
CAS
PubMed
Google Scholar
Messier W, Stewart CB. Episodic adaptive evolution of primate lysozymes. Nature. 1997;385(6612):151–4.
Article
CAS
PubMed
Google Scholar
Zhang J, Kumar S. Detection of convergent and parallel evolution at the amino acid sequence level. Mol Biol Evol. 1997;14(5):527–36.
Article
CAS
PubMed
Google Scholar
Yang Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998;15(5):568–73.
Article
CAS
PubMed
Google Scholar
Fletcher W, Yang Z. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Mol Biol Evol. 2010;27(10):2257–67.
Article
CAS
PubMed
Google Scholar
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22(12):2472–9.
Article
CAS
PubMed
Google Scholar
Wang W, Huang Y, Zhou Z, Tang R, Zhao W, Zeng L, et al. Identification and characterization of AGTRAP, a human homolog of murine Angiotensin II Receptor-Associated Protein (Agtrap). Int J Biochem Cell Biol. 2002;34(1):93–102.
Article
CAS
PubMed
Google Scholar
Camelo Jr JS, Martins AR, Rosa E, Ramos SG, Hehre D, Bancalari E, et al. Angiotensin II type 1 receptor blockade partially attenuates hypoxia-induced pulmonary hypertension in newborn piglets: relationship with the nitrergic system. Braz J Med Biol Res. 2012;45(2):163–71.
Article
PubMed Central
CAS
Google Scholar
Gehrke SG, Riedel HD, Herrmann T, Hadaschik B, Bents K, Veltkamp C, et al. UbcH5A, a member of human E2 ubiquitin-conjugating enzymes, is closely related to SFT, a stimulator of iron transport, and is up-regulated in hereditary hemochromatosis. Blood. 2003;101(8):3288–93.
Article
CAS
PubMed
Google Scholar
Vanni E, Gatherer D, Tong L, Everett RD, Boutell C. Functional characterization of residues required for the herpes simplex virus 1 E3 ubiquitin ligase ICP0 to interact with the cellular E2 ubiquitin-conjugating enzyme UBE2D1 (UbcH5a). J Virol. 2012;86(11):6323–33.
Article
PubMed Central
CAS
PubMed
Google Scholar
Loublier S, Bayot A, Rak M, El-Khoury R, Benit P, Rustin P. The NDUFB6 subunit of the mitochondrial respiratory chain complex I is required for electron transfer activity: a proof of principle study on stable and controlled RNA interference in human cell lines. Biochem Biophys Res Commun. 2011;414(2):367–72.
Article
CAS
PubMed
Google Scholar
Whitfield AJ, Barrett PH, van Bockxmeer FM, Burnett JR. Lipid disorders and mutations in the APOB gene. Clin Chem. 2004;50(10):1725–32.
Article
CAS
PubMed
Google Scholar
Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell. 2006;126(2):297–308.
Article
CAS
PubMed
Google Scholar
Merkle CJ, Karnitz LM, Henry-Sanchez JT, Chen J. Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment J Biol Chem. 2003;278(32):30051–6.
CAS
Google Scholar
Liu Y, Zhou K, Zhang H, Shugart YY, Chen L, Xu Z, et al. Polymorphisms of LIG4 and XRCC4 involved in the NHEJ pathway interact to modify risk of glioma. Hum Mutat. 2008;29(3):381–9.
Article
PubMed
Google Scholar
Chiruvella KK, Renard BM, Birkeland SR, Sunder S, Liang Z, Wilson TE. Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding. DNA Repair (Amst). 2014;24:37–45.
Article
CAS
Google Scholar
Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, et al. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet. 2000;25(1):115–19.
Article
CAS
PubMed
Google Scholar
Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998;93(3):467–76.
Article
CAS
PubMed
Google Scholar
Sevcik J, Falk M, Macurek L, Kleiblova P, Lhota F, Hojny J, et al. Expression of human BRCA1Delta17-19 alternative splicing variant with a truncated BRCT domain in MCF-7 cells results in impaired assembly of DNA repair complexes and aberrant DNA damage response. Cell Signal. 2013;25(5):1186–93.
Article
CAS
PubMed
Google Scholar
Somyajit K, Basavaraju S, Scully R, Nagaraju G. ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol Cell Biol. 2013;33(9):1830–44.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murray JM, Carr AM. Smc5/6: a link between DNA repair and unidirectional replication? Nat Rev Mol Cell Biol. 2008;9(2):177–82.
Article
CAS
PubMed
Google Scholar
Piwko W, Buser R, Peter M. Rescuing stalled replication forks: MMS22L-TONSL, a novel complex for DNA replication fork repair in human cells. Cell Cycle. 2011;10(11):1703–5.
Article
CAS
PubMed
Google Scholar
Wu S, Shi Y, Mulligan P, Gay F, Landry J, Liu H, et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat Struct Mol Biol. 2007;14(12):1165–72.
Article
PubMed Central
CAS
PubMed
Google Scholar
Stern DL. The genetic causes of convergent evolution. Nat Rev Genet. 2013;14(11):751–64.
Article
CAS
PubMed
Google Scholar
Projecto-Garcia J, Natarajan C, Moriyama H, Weber RE, Fago A, Cheviron ZA, et al. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc Natl Acad Sci U S A. 2013;110(51):20669–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang W, Qi Y, Fu J. Exploring the genetic basis of adaptation to high elevations in reptiles: a comparative transcriptome analysis of two toad-headed agamas (genus Phrynocephalus). PLoS One. 2014;9(11), e112218.
Article
PubMed Central
PubMed
Google Scholar
Gordon A, Hannon G: FASTQ/A short-reads pre-processing tools. [http://hannonlab.cshl.edu/fastx_toolkit]
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34((Web Server issue):W293–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(Web Server issue):W182–5.
Article
PubMed Central
PubMed
Google Scholar
Remm M, Storm CE, Sonnhammer EL. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001;314(5):1041–52.
Article
CAS
PubMed
Google Scholar
Alexeyenko A, Tamas I, Liu G, Sonnhammer EL. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics. 2006;22(14):e9–15.
Article
CAS
PubMed
Google Scholar
Loytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A. 2005;102(30):10557–62.
Article
PubMed Central
PubMed
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214.
Article
PubMed Central
PubMed
Google Scholar
Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19(6):908–17.
Article
CAS
PubMed
Google Scholar
Chimpanzee S, Analysis C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87.
Article
Google Scholar
Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22(4):1107–18.
Article
CAS
PubMed
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2012;40(Database issue):D290–301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–71.
Article
CAS
PubMed
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
PubMed
Google Scholar
DeLano, WL. The PyMOL Molecular Graphics System. [www.pymol.org].
Unni S, Huang Y, Hanson RM, Tobias M, Krishnan S, Li WW, et al. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem. 2011;32(7):1488–91.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang Y, Wang L, Han J, Tang X, Ma M, Wang K, Zhang X, Ren Q, Chen Q, Qiu Q. Data from: Comparative transcriptomic analysis revealed adaptation mechanism of Phrynocephalus erythrurus, the highest altitude Lizard living in the Qinghai-Tibet Plateau. BMC Evol Biol 2015, http://dx.doi.org/10.5061/dryad.f587b.