Hedges SB, Kumar S. The Timetree of Life. Oxford: Oxford University Press; 2009.
Google Scholar
Laenen B, Shaw B, Schneider H, Goffinet B, Paradis E, Désamoré A, et al. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Comm. 2014;5:5134.
CAS
Google Scholar
Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallon S, Lupia R. Ferns diversified in the shadow of angiosperms. Nature. 2004;428:553–7.
CAS
PubMed
Google Scholar
Schuettpelz E, Pryer KM. Evidence for a Cenozoic radiation of ferns in an angiosperm-dominated canopy. Proc Natl Acad Sci U S A. 2009;106:11200–5.
PubMed Central
CAS
PubMed
Google Scholar
Won H, Renner SS. Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales) - Clock calibration when outgroup relationships are uncertain. Syst Biol. 2006;55:610–22.
PubMed
Google Scholar
Nagalingum NS, Marshall CR, Quental TB, Rai HS, Little DP, Mathews S. Recent synchronous radiation of a living fossil. Science. 2011;334:796–9.
CAS
PubMed
Google Scholar
Mao K, Milne RI, Zhang L, Peng Y, Liu J, Thomas P, et al. Distribution of living Cupressaceae reflects the breakup of Pangea. Proc Natl Acad Sci U S A. 2012;109:7793–8.
PubMed Central
CAS
PubMed
Google Scholar
Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S. Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A. 2012;109:16217–21.
PubMed Central
CAS
PubMed
Google Scholar
Magallón SA, Castillo A. Angiosperm diversification through time. Am J Bot. 2009;96:349–65.
PubMed
Google Scholar
Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol. 2011;11:341.
PubMed Central
PubMed
Google Scholar
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92.
CAS
PubMed
Google Scholar
Percy DM, Page RDM, Cronk QCB. Plant-insect interactions: double-dating associated insect and plant lineages reveals asynchronous radiations. Syst Biol. 2004;53:120–7.
PubMed
Google Scholar
Kumar S. Molecular clocks: four decades of evolution. Nature Rev Genet. 2005;6:654–62.
CAS
PubMed
Google Scholar
Donoghue PCJ, Benton MJ. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol. 2007;22:424–31.
PubMed
Google Scholar
Alfaro ME, Holder MT. The posterior and the prior in Bayesian phylogenetics. Annu Rev Ecol Evol Syst. 2006;37:19–42.
Google Scholar
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88.
PubMed Central
PubMed
Google Scholar
Inoue J, Donoghue PCJ, Yang Z. The impact of the representation of fossil calibrations on Bayesian estimation of species divergence times. Syst Biol. 2010;59:74–89.
PubMed
Google Scholar
Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular clock using fossil calibrations with soft bounds. Mol Biol Evol. 2006;23:212–26.
CAS
PubMed
Google Scholar
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58:367–80.
PubMed
Google Scholar
Yang Z, Rannala B. Branch-length prior influences Bayesian posterior probability of phylogeny. Syst Biol. 2005;54:455–70.
PubMed
Google Scholar
Heled J, Drummond AJ. Calibrated birth-death phylogenetic time-tree priors for Bayesian inference. Syst Biol. 2015;64:369–383.
Morlon H. Phylogenetic approaches for studying diversification. Ecol Lett. 2014;17:508–25.
PubMed
Google Scholar
Yang Z, Goldman N, Friday A. Maximum likelihood tree from DNA sequences: a peculiar statistical estimation problem. Syst Biol. 1995;44:384–99.
Google Scholar
Rannala B, Yang Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol. 1996;43:304–11.
CAS
PubMed
Google Scholar
Gernhard T. The conditioned reconstructed process. J Theoret Biol. 2008;253:769–78.
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
PubMed Central
CAS
PubMed
Google Scholar
Kergoat GJ, Bouchard P, Clamens A-L, Abbate JL, Jourdan H, Zahab R, et al. Cretaceous environmental changes led to high turnovers and decreases in diversification rates in a hyperdiverse non-phytophagous beetle family. BMC Evol Biol. 2014;14:220.
PubMed Central
PubMed
Google Scholar
Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker F, Koch M, Mummenhoff K. Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol. 2010;27:55–71.
CAS
PubMed
Google Scholar
Osborne R, Calonje MA, Hill KD, Stanberg L, Stevenson DW. The world list of Cycads. Mem New York Botl Gard. 2012;106:480–510.
Google Scholar
Pant DD. The fossil history and phylogeny of the cycadales. Geophytol. 1987;17:125–62.
Google Scholar
Axsmith BJ, Serbet R, Krings M, Taylor TN, Taylor EL, Mamay SH. The enigmatic Paleozoic plants Spermopteris and Phasmatocycas reconsidered. Am J Bot. 2003;90:1585–95.
PubMed
Google Scholar
Hermsen EJ, Taylor TN, Taylor EL, Stevenson DW. Cataphylls of the Middle Triassic cycad Antarcticycas schopfii and new insights into cycad evolution. Am J Bot. 2006;93:724–38.
PubMed
Google Scholar
Cúneo NR, Escapa I, Villar-de-Seoane L, Artabe A, Gnaedinger S. Review of the Cycads and Bennettitaleans from the Mesozoic of Argentina. In: Gee CT, editor. Plants in Mesozoic Time: Morphological Innovations, Phylogeny, Ecosystems. Bloomington: Indiana University Press; 2010. p. 187–212.
Google Scholar
Crane PR. Vegetational consequences of the angiosperm diversification. In: Friis EM, Chaloner WC, Crane PR, editors. The Origin of Angiosperms and their Biological Consequences. Cambridge: Cambridge University Press; 1987. p. 107–44.
Google Scholar
Lupia R, Lidgard S, Crane PR. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiol. 1999;25:305–40.
Google Scholar
van de Schootbrugge B, Quan TM, Lindström S, Püttmann W, Heunisch C, Pross J, et al. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nature Geosci. 2009;2:589–94.
Google Scholar
Coiffard C, Gomez B, Daviero-Gomez V, Dilcher DL. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc Natl Acad Sci U S A. 2012;109:20955–9.
PubMed Central
CAS
PubMed
Google Scholar
Crisp MD, Cook LG. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 2011;192:997–1009.
CAS
PubMed
Google Scholar
Willis KJ, McElwain JC. The Evolution of Plants. Oxford: Oxford University Press; 2002.
Google Scholar
McElwain JC, Punyasena SW. Mass extinction events and the fossil record. Trends Ecol Evol. 2007;22:548–57.
PubMed
Google Scholar
Butler RJ, Barrett PM, Kenrick P, Penn MG. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads. Biological Rev. 2009;84:73–89.
Google Scholar
Taylor TN, Taylor EL, Krings M. Paleobotany: The Biology and Evolution of Fossil Plants. 2nd ed. Burlington: Academic Press; 2009.
Google Scholar
Salas-Leiva DE, Meerow AW, Calonje M, Griffith MP, Francisco-Ortega J, Nakamura K, et al. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods. Ann Bot. 2013;112:1263–78.
PubMed Central
PubMed
Google Scholar
Hollick A. Descriptions of new species of Tertiary cycads, with a review of those previously recorded. Bull Torrey Bot Club. 1932;59:169–89.
Google Scholar
Hill RS. Three new Eocene cycads from eastern Australia. Austral J Bot. 1980;28:105–22.
Google Scholar
Horiuchi J, Kimura T. Dioonopsis nipponica gen. et sp. nov., a new cycad from the Palaeogene of Japan. Rev Palaeobot Palynol. 1987;51:213–25.
Google Scholar
Kvaček Z. A new Tertiary Ceratozamia (Zamiaceae, Cycadopsida) from the European Oligocene. Flora – Morphology, Distribution Functional Ecology of Plants. 2002;197:303–16.
Google Scholar
Erdei B, Manchester SR, Kvaček Z. Dioonopsis Horiuchi et Kimura leaves from the Eocene of Western North America: a cycad shared with the Paleogene of Japan. Intl J Plant Sci. 2012;173:81–95.
Google Scholar
Kvaček Z. New fossil records of Ceratozamia (Zamiaceae, Cycadales) from the European Oligocene and lower Miocene. Acta Palaeobot. 2014;54:231–47.
Google Scholar
Su K, Quan C, Liu Y-S. Cycas fushunensis sp. nov. (Cycadaceae) from the Eocene of northeast China. Rev Palaeobot Palynol. 2014;204:43–9.
Google Scholar
Griffith MP, Magellan TM, Tomlinson PB. Variation in leaflet structure in Cycas (Cycadales: Cycadaceae): Does anatomy follow phylogeny and geography? Intl J Plant Sci. 2014;175:241–55.
Google Scholar
González D, Vovides AP. Low intralineage divergence in Ceratozamia (Zamiaceae) detected with nuclear ribosomal DNA ITS and chloroplast DNA trnL-F non-coding region. Syst Bot. 2002;27:654–61.
Google Scholar
Hill KD, Chase MW, Stevenson DW, Hill HG, Schutzman B. The families and genera of cycads: a molecular phylogenetic analysis of Cycadophyta based on nuclear and plastid DNA sequences. Intl J Plant Sci. 2003;164:933–48.
CAS
Google Scholar
Rai HS, O’Brien HE, Reeves PA, Olmstead RG, Graham SW. Inference of higher-order relationships in the cycads from a large chloroplast data set. Mol Phylogenet Evol. 2003;29:350–9.
CAS
PubMed
Google Scholar
Chaw S-M, Walters TW, Chang C-C, Hu S-H, Chen S-H. A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phylogenet Evol. 2005;37:214–34.
CAS
PubMed
Google Scholar
González D, Vovides AP, Barcenas C. Phylogenetic relationships of the Neotropical genus Dioon (Cycadales, Zamiaceae) based on nuclear and chloroplast DNA sequence data. Syst Bot. 2008;33:229–36.
Google Scholar
Yessoufou K, Bamigboye SO, Daru BH, van der Bank M. Evidence of constant diversification punctuated by a mass extinction in the African cycads. Ecol Evol. 2013;4:50–8.
PubMed Central
PubMed
Google Scholar
Wu CH, Chaw SM, Huang YY. Chloroplast phylogenomics indicates that Ginkgo biloba is sister to cycads. Genome Biol Evol. 2013;5:243–54.
PubMed Central
PubMed
Google Scholar
Martínez LCA, Artabe AEE, Bodnar J. A new cycad stem from the Cretaceous in Argentina and its phylogenetic relationships with other Cycadales. Bot J Linn Soc. 2012;170:436–58.
Google Scholar
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol. 2012;61:289–313.
PubMed
Google Scholar
Near TJ, Meylan PA, Shaffer HB. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am Nat. 2005;165:137–46.
PubMed
Google Scholar
Clarke JT, Warnock RCM, Donoghue PCJ. Establishing a time-scale for plant evolution. New Phytol. 2011;192:266–301.
PubMed
Google Scholar
Gradstein FM, Ogg JG, Schmitz MD, Ogg GM. The Geologic Time Scale 2012, Volume Set. Boston, USA: Elsevier; 2012.
Google Scholar
Zhu JN, Zhang SS, Ma J. A new genus and species – Cycadostrobus paleozoicus Zhu of Cycadaceae from the Permian of China. Acta Phytotaxo Sinica. 1994;32:340–4.
Google Scholar
Zhu JN, Du XM. A new cycad – Primocycas chinensis gen. et sp. nov. discovers from the Lower Permian in Sha-nxi, China and its significance. Acta Bot Sinica. 1981;23:401–4.
Google Scholar
Zhifeng G, Thomas BA. A review of fossil cycad megasporophylls, with new evidence of Crossozamia Pomel and its associated leaves from the Lower Permian of Taiyuan, China. Rev Palaeobot Palynol. 1989;60:205–23.
Google Scholar
Wang J. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. Intl J Coal Geol. 2010;83:292–317.
CAS
Google Scholar
Hill RS. Two new species of Bowenia Hook, ex Hook, f. from the Eocene of eastern Australia. Austral J Bot. 1978;26:837–46.
Google Scholar
Smoot EL, Taylor TN, Delevoryas T. Structurally preserved fossil plants from Antarctica. I. Antarcticycas, gen. nov., a Triassic cycad stem from the Beardmore Glacier area. Am J Bot. 1985;72:1410–23.
Google Scholar
Hermsen EJ, Taylor EL, Taylor TN. Morphology and ecology of the Antarcticycas plant. Rev Palaeobot Palynol. 2009;153:108–23.
Google Scholar
Rothwell GW, Scheckler SE, Gillespie WH. Elkinsia gen nov, a Late Devonian gymnospermn with cupulate ovules. Bot Gazette. 1989;150:170–89.
Google Scholar
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
PubMed Central
PubMed
Google Scholar
Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012;29:1695–701.
CAS
PubMed
Google Scholar
Huelsenbeck JP, Larget B, Alfaro ME. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol. 2004;21:1123–33.
CAS
PubMed
Google Scholar
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer v1.6. Available at: http://beast.bio.ed.ac.uk/Tracer; 2015
Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol. 2013;30:239–43.
PubMed Central
CAS
PubMed
Google Scholar
Vanneste K, Baele G, Maere S, Van de Peer Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous–Paleogene boundary. Genome Res. 2014;24:1334–47.
PubMed Central
CAS
PubMed
Google Scholar
Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc R Soc B. 2015;282:20141013.
PubMed Central
PubMed
Google Scholar
Near TJ, Sanderson MJ. Assessing the quality of molecular divergence time estimates by fossil calibrations and fossil-based model selection. Philos T R Soc B. 2004;359:1477–83.
Google Scholar
Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol. 2012;61:170–3.
PubMed Central
PubMed
Google Scholar
Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, et al. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinformatics. 2015;11:43–8.
Google Scholar
Lartillot N, Philippe H. Computing Bayes factors using thermodynamic integration. Syst Biol. 2006;55:195–207.
PubMed
Google Scholar
Xie W, Lewis PO, Fan Y, Kuo L, Chen MH. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol. 2011;60:150–60.
PubMed Central
PubMed
Google Scholar
Kass RE, Raftery AE. Bayes factors. J Am Stat Assoc. 1995;90:773–95.
Google Scholar
Rabosky DL, Santini F, Eastman JM, Smith SA, Sidlauskas B, Chang J, et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nature Comm. 2013;4:1958.
Google Scholar
Rabosky DL, Donnellan SC, Grundler M, Lovette IJ. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst Biol. 2014;63:610–27.
PubMed
Google Scholar
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity dependence on phylogenetic trees. PLoS One. 2014;9:e89543.
PubMed Central
PubMed
Google Scholar
Paradis E. Can extinction rates be estimated without fossils? J Theor Biol. 2004;229:19–30.
PubMed
Google Scholar
Quental TB, Marshall CR. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol Evol. 2010;25:434–41.
PubMed
Google Scholar
Rabosky DL. Extinction rates should not be estimated from molecular phylogenies. Evolution. 2010;64:1816–24.
PubMed
Google Scholar
Nee S, Holmes EC, May RM, Harvey PH. Extinction rates can be estimated from molecular phylogenies. Philos Trans R Soc B. 1994;344:77–82.
CAS
Google Scholar
Purvis A. Phylogenetic approaches to the study of extinction. Annu Rev Ecol Evol Syst. 2008;39:301–19.
Google Scholar
Morlon H, Parsons TL, Plotkin JB. Reconciling molecular phylogenies with the fossil record. Proc Natl Acad Sci U S A. 2011;108:16327–32.
PubMed Central
CAS
PubMed
Google Scholar
Beaulieu JM, O’Meara BC. Extinction can be estimated from moderately sized molecular phylogenies. Evolution. 2015, doi.org/10.1111/evo.12614.
Huang S, Chiang YC, Schaal BA, Chou CH, Chiang TY. Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Mol Ecol. 2001;10:2669–81.
CAS
PubMed
Google Scholar
Xiao LQ, Möller M. Nuclear ribosomal its functional paralogs resolve the phylogenetic relationships of a late-Miocene radiation cycad Cycas (Cycadaceae). PLoS One. 2015;10:e0117971.
PubMed Central
PubMed
Google Scholar
Treutlein J, Vorster P, Wink M. Molecular relationships in Encephalartos (Zamiaceae, Cycadales) based on nucleotide sequences of nuclear ITS 1&2, rbcL, and genomic ISSR fingerprinting. Plant Biol. 2005;7:79–90.
CAS
PubMed
Google Scholar
Sharma IK, Jones DL, Forster PI. Genetic differentiation and phenetic relatedness among seven species of the Macrozamia plurinervia complex (Zamiaceae). Biochem Syst Ecol. 2004;32:313–27.
CAS
Google Scholar
Caputo P, Cozzolino S, Gaudio L, Moretti A, Stevenson D. Karyology and phylogeny of some mesoamerican species of Zamia (Zamiaceae). Am J Bot. 1996;83:1513–20.
Google Scholar
Zgurski JM, Rai HS, Fai QM, Bogler DJ, Francisco-Ortega J, Graham SW. How well do we understand the overall backbone of cycad phylogeny? New insights from a large, multigene plastid data set. Mol Phylogenet Evol. 2008;47:1232–7.
CAS
PubMed
Google Scholar
Raup DM. Extinction: Bad genes or bad luck? New York: W.W. Norton and Company; 1991.
Google Scholar
Heled J, Drummond AJ. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst Biol. 2012;61:138–49.
PubMed Central
PubMed
Google Scholar
Heath TA, Huelsenbeck JP, Stadler T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci U S A. 2014;111:E2957–66.
PubMed Central
CAS
PubMed
Google Scholar
Hagen O, Hartmann K, Steel M, Stadler T. Age-dependent speciation can explain the shape of empirical phylogenies. Syst Biol. 2015;64:432–440.
Drummond AJ, Bouckaert RR. Bayesian evolutionary analysis with BEAST. Cambridge: Cambridge University Press; 2015.
Google Scholar
Toussaint EFA, Condamine FL, Hawlitschek O, Watts CHS, Porch N, Hendrich L, et al. Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic. Syst Biol. 2015;64:3–24.
PubMed
Google Scholar
Antonelli A, Sanmartín I. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst Biol. 2011;60:596–615.
PubMed
Google Scholar
Thomas N, Bruhl JJ, Ford A, Weston PH. Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long-distance dispersal. J Biogeogr. 2014;41:894–904.
Google Scholar
Burleigh JG, Brabazuk WD, Davis JM, Morse AM, Soltis PS. Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J Bot. 2012;2012:1–6.
Google Scholar
Peñalver E, Labandeira CC, Barrón E, Delclòs X, Nel P, Nel A, et al. Thrips pollination of Mesozoic gymnosperms. Proc Natl Acad Sci U S A. 2012;109:8623–8.
PubMed Central
PubMed
Google Scholar
Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One. 2014;9:e109085.
PubMed Central
PubMed
Google Scholar
Niklas KJ, Tiffney BH, Knoll AH. Patterns in vascular land plant diversification. Nature. 1983;303:614–6.
Google Scholar
Silvestro D, Cascales-Miñana B, Bacon CD, Antonelli A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. in press, doi.org/10.1111/nph.13247.
Artabe A, Archangelsky S. Las Cycadales Mesodescolea plicata Archangelsky emend. Archangelsky y Petriella 1971 (Cretacio) y Stangeria Moore (Actual). Estudio comparativo de epidermis foliar con microscopia electr6nica de barrido y transmisi6n. Ameghiniana. 1992;28:115–23.
Google Scholar
Artabe A, Stevenson DW. Fossil Cycadales of Argentina. Botanical Rev. 1999;65:219–38.
Google Scholar
Passalia MG, Del Fueyo G, Archangelsky S. An Early Cretaceous zamiaceous cycad of South West Gondwana: Restrepophyllum nov. gen. from Patagonia, Argentina. Rev Palaeobot Palynol. 2010;161:137–50.
Google Scholar
Crisp MD, Cook LG. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution. 2009;63:2257–65.
PubMed
Google Scholar
Uzunova K, Palamarev E, Kvaček Z. Eostangeria ruzinciniana (Zamiaceae) from the Middle Miocene of Bulgaria and its relationship to similar taxa of fossil Eostangeria, and extant Chigua and Stangeria (Cycadales). Acta Palaeobot. 2001;41:177–93.
Google Scholar
Nagalingum NS, Drinnan AN, Lupia R, McLoughlin S. Fern spore diversity and abundance in Australia during the Cretaceous. Rev Palaeobot Palynol. 2002;119:69–92.
Google Scholar
Tang W. The evolutionary history of North American cycads. Cycad Newslett. 2012;35:7–13.
Google Scholar
Cramer BS, Miller KG, Barrett PJ, Wright JD. Late Cretaceous–Neogene trends in deep ocean temperature and continental ice volume: Reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea level history. J Geophys Res: Oceans. 2011;116:1978–2012.
Google Scholar
Meseguer AS, Lobo JM, Ree R, Beerling DJ, Sanmartín I. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (Hypericaceae). Syst Biol. 2015;64:215–32.
PubMed Central
PubMed
Google Scholar
Ronquist F, Klopfstein S, Vilhelmsen L, Schulmeister S, Murray DL, Rasnitsyn AP. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst Biol. 2012;61:973–99.
PubMed Central
PubMed
Google Scholar
Grimm GW, Kapli P, Bomfleur B, McLoughlin S, Renner SS. Using more than the oldest fossils: Dating Osmundaceae with three Bayesian clock approaches. Syst Biol. 2015;64:96–405.
Condamine FL, Nagalingum NS, Marshall CR, Morlon H. Data from: Origin and diversification of living cycads: A cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol. 2015, http://dx.doi.org/10.5061/dryad.20k7m.