Eigen M: Selforganization of matter and evolution of biological macromolecules. Naturwissenschaften. 1971, 58 (10): 465-10.1007/BF00623322.
Article
PubMed
CAS
Google Scholar
Eigen M, Schuster P: Hypercycle - Principle of Natural Self-Organization. A. Emergence of Hypercycle. Naturwissenschaften. 1977, 64 (11): 541-565. 10.1007/BF00450633.
Article
PubMed
CAS
Google Scholar
Eigen M, McCaskill J, Schuster P: Molecular quasi-species. J Phys Chem-Us. 1988, 92 (24): 6881-6891. 10.1021/j100335a010.
Article
CAS
Google Scholar
Biebricher CK, Eigen M: What is a quasispecies?. Curr Top Microbiol Immunol. 2006, 299: 1-31.
PubMed
CAS
Google Scholar
Stich M, Briones C, Manrubia SC: Collective properties of evolving molecular quasispecies. BMC Evol Biol 2007, 7.,
Holland JJ, De La Torre JC, Steinhauer DA: RNA virus populations as quasispecies. Curr Top Microbiol Immunol 1992, 176:1–20,
Domingo E: Quasispecies theory in virology. J Virol. 2002, 76 (1): 463-465. 10.1128/JVI.76.1.463-465.2002.
Article
CAS
PubMed Central
Google Scholar
Wilke CO: Quasispecies theory in the context of population genetics. BMC Evol Biol 2005, 5:44.
Lauring AS, Andino R: Quasispecies Theory and the Behavior of RNA Viruses. PLoS pathogens 2010, 6(7):e1001005.
Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R: Viral mutation rates. J Virol. 2010, 84 (19): 9733-9748. 10.1128/JVI.00694-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jenkins GM, Worobey M, Woelk CH, Holmes EC: Evidence for the non-quasispecies evolution of RNA viruses. Mol Biol Evol. 2001, 18 (6): 987-994. 10.1093/oxfordjournals.molbev.a003900.
Article
PubMed
CAS
Google Scholar
Ruiz-Jarabo CM, Arias A, Molina-Paris C, Briones C, Baranowski E, Escarmis C, Domingo E: Duration and fitness dependence of quasispecies memory. J Mol Biol. 2002, 315 (3): 285-296. 10.1006/jmbi.2001.5232.
Article
PubMed
CAS
Google Scholar
Holmes EC, Moya A: Is the quasispecies concept relevant to RNA viruses?. J Virol. 2002, 76 (1): 460-465. 10.1128/JVI.76.1.460-462.2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wurm FM: CHO quasispecies—implications for manufacturing processes. Processes. 2013, 1 (3): 296-311. 10.3390/pr1030296.
Article
CAS
Google Scholar
Arenas CD, Lehman N: Quasispecies-like behavior observed in catalytic RNA populations evolving in a test tube. BMC Evol Biol. 2010, 10 (1): 80-10.1186/1471-2148-10-80.
Article
Google Scholar
Kun A, Santos M, Szathmary E: Real ribozymes suggest a relaxed error threshold. Nat Genet. 2005, 37 (9): 1008-1011. 10.1038/ng1621.
Article
PubMed
CAS
Google Scholar
Swetina J, Schuster P: Model Studies on RNA Replication.2. Self-Replication with Errors - a Model for Polynucleotide Replication. Biophys Chem. 1982, 16 (4): 329-345. 10.1016/0301-4622(82)87037-3.
Article
PubMed
CAS
Google Scholar
Takeuchi N, Poorthuis PH, Hogeweg P: Phenotypic error threshold; additivity and epistasis in RNA evolution. BMC Evol Biol. 2005, 5: 9-10.1186/1471-2148-5-9.
Article
PubMed
PubMed Central
Google Scholar
Huynen MA, Stadler PF, Fontana W: Smoothness within ruggedness: the role of neutrality in adaptation. Proc Natl Acad Sci U S A. 1996, 93 (1): 397-401. 10.1073/pnas.93.1.397.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sierra S, Davila M, Lowenstein PR, Domingo E: Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J Virol. 2000, 74 (18): 8316-8323. 10.1128/JVI.74.18.8316-8323.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Crotty S, Cameron CE, Andino R: RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A. 2001, 98 (12): 6895-6900. 10.1073/pnas.111085598.
Article
PubMed
CAS
PubMed Central
Google Scholar
Summers J, Litwin S: Examining the theory of error catastrophe. J Virol. 2006, 80 (1): 20-26. 10.1128/JVI.80.1.20-26.2006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ojosnegros S, Perales C, Mas A, Domingo E: Quasispecies as a matter of fact: viruses and beyond. Virus Res. 2011, 162 (1–2): 203-215. 10.1016/j.virusres.2011.09.018.
Article
PubMed
CAS
Google Scholar
Perales C, Martin V, Domingo E: Lethal mutagenesis of viruses. Curr Opin Virol. 2011, 1 (5): 419-422. 10.1016/j.coviro.2011.09.001.
Article
PubMed
CAS
Google Scholar
Orgel LE: Evolution of the genetic apparatus: a review. Cold Spring Harb Symp Quant Biol. 1987, 52: 9-16. 10.1101/SQB.1987.052.01.004.
Article
PubMed
CAS
Google Scholar
Higgs ES: What is good ecological restoration?. Conserv Biol. 1997, 11 (2): 338-348. 10.1046/j.1523-1739.1997.95311.x.
Article
Google Scholar
Kono N, Arakawa K, Tomita M: Validation of Bacterial Replication Termination Models Using Simulation of Genomic Mutations. PLoS ONE. 2012, 7 (4): e34526-10.1371/journal.pone.0034526.
Article
PubMed
CAS
PubMed Central
Google Scholar
Root-Bernstein R: A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Accounts Chem Res. 2012, 45 (12): 2169-2177. 10.1021/ar200209k.
Article
CAS
Google Scholar
Gonzalez AG: Use and misuse of supervised pattern recognition methods for interpreting compositional data. J Chromatogr A. 2007, 1158 (1–2): 215-225. 10.1016/j.chroma.2007.02.091.
Article
PubMed
CAS
Google Scholar
Pertea M: The human transcriptome: an unfinished story. Genes. 2012, 3 (3): 344-360. 10.3390/genes3030344.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lubeck E, Cai L: Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods. 2012, 9 (7): 743-U159. 10.1038/nmeth.2069.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wills QF, Livak KJ, Tipping AJ, Enver T, Goldson AJ, Sexton DW, Holmes C: Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol. 2013, 31 (8): 748-10.1038/nbt.2642.
Article
PubMed
CAS
Google Scholar
Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B: Mass-spectrometry-based draft of the human proteome. Nature. 2014, 509 (7502): 582-587. 10.1038/nature13319.
Article
PubMed
CAS
Google Scholar
Nesvizhskii AI: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010, 73 (11): 2092-2123. 10.1016/j.jprot.2010.08.009.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mann M, Kulak NA, Nagaraj N, Cox J: The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013, 49 (4): 583-590. 10.1016/j.molcel.2013.01.029.
Article
PubMed
CAS
Google Scholar
Segre D, Ben-Eli D, Lancet D: Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A. 2000, 97 (8): 4112-4117. 10.1073/pnas.97.8.4112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Segre D, Lancet D: Composing life. Embo Rep. 2000, 1 (3): 217-222. 10.1093/embo-reports/kvd063.
Article
PubMed
CAS
PubMed Central
Google Scholar
Segre D, Ben-Eli D, Deamer DW, Lancet D: The lipid world. Origins Life Evol B. 2001, 31 (1–2): 119-145. 10.1023/A:1006746807104.
Article
CAS
Google Scholar
Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R: Compositional complementarity and prebiotic ecology in the origin of life. Bioessays. 2006, 28 (4): 399-412. 10.1002/bies.20389.
Article
PubMed
CAS
Google Scholar
Norris V, Hunding A, Kepes F, Lancet D, Minsky A, Raine D, Root-Bernstein R, Sriram K: The first units of life were not simple cells. Ori Life Evol Biosph. 2007, 37 (4–5): 429-432. 10.1007/s11084-007-9088-z.
Article
Google Scholar
Shenhav B, Oz A, Lancet D: Coevolution of compositional protocells and their environment. Philos T R Soc B. 2007, 362 (1486): 1813-1819. 10.1098/rstb.2007.2073.
Article
CAS
Google Scholar
Markovitch O, Lancet D: Excess mutual catalysis is required for effective evolvability. Artif Life. 2012, 18 (3): 243-266. 10.1162/artl_a_00064.
Article
PubMed
Google Scholar
Markovitch O, Lancet D: Multispecies population dynamics of prebiotic compositional assemblies. J Theor Biol. 2014, 357: 26-34. 10.1016/j.jtbi.2014.05.005.
Article
PubMed
Google Scholar
Gilbert W: Origin of Life - the RNA World. Nature. 1986, 319 (6055): 618-618. 10.1038/319618a0.
Article
Google Scholar
Dyson F: Origins of Life. 1999, Cambridge University, Cambridge, 2
Book
Google Scholar
Joyce GF: The antiquity of RNA-based evolution. Nature. 2002, 418 (6894): 214-221. 10.1038/418214a.
Article
PubMed
CAS
Google Scholar
Orgel LE: Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol. 2004, 39 (2): 99-123. 10.1080/10409230490460765.
Article
PubMed
CAS
Google Scholar
Shapiro R: Small molecule interactions were central to the origin of life. Q Rev Biol. 2006, 81 (2): 105-125. 10.1086/506024.
Article
PubMed
Google Scholar
Bernhardt HS: The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). Biol Direct. 2012, 7: 23-10.1186/1745-6150-7-23.
Article
PubMed
CAS
PubMed Central
Google Scholar
Takeuchi N, Hogeweg P: Evolutionary dynamics of RNA-like replicator systems: a bioinformatic approach to the origin of life. Phys Life Rev. 2012, 9 (3): 219-263. 10.1016/j.plrev.2012.06.001.
Article
PubMed
PubMed Central
Google Scholar
Eigen M: Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A. 2002, 99 (21): 13374-13376. 10.1073/pnas.212514799.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gesteland FR, Cech RT, Atkins FJ: The RNA World. 1999, Cold Spring, Cold Spring Harbor Laboratory
Google Scholar
Hanczyc MM, Fujikawa SM, Szostak JW: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science. 2003, 302 (5645): 618-622. 10.1126/science.1089904.
Article
PubMed
CAS
PubMed Central
Google Scholar
Anet FA: The place of metabolism in the origin of life. Curr Opin Chem Biol. 2004, 8 (6): 654-659. 10.1016/j.cbpa.2004.10.005.
Article
PubMed
CAS
Google Scholar
Luisi PL, Walde P, Oberholzer T: Lipid vesicles as possible intermediates in the origin of life. Curr Opin Colloid Interface Sci. 1999, 4 (1): 33-39. 10.1016/S1359-0294(99)00012-6.
Article
CAS
Google Scholar
Takeuchi N, Hogeweg P: Error-threshold exists in fitness landscapes with lethal mutants. BMC Evol Biol. 2007, 7: 15-10.1186/1471-2148-7-15. author reply 15
Article
PubMed
PubMed Central
Google Scholar
Inger A, Solomon A, Shenhav B, Olender T, Lancet D: Mutations and lethality in simulated prebiotic networks. J Mol Evol. 2009, 69 (5): 568-578. 10.1007/s00239-009-9281-y.
Article
PubMed
CAS
Google Scholar
Kuppers B-O: Molecular theory of evolution: outline of a physico-chemical theory of the origin of life. 1983, Springer-Verlag, Berlin, Germany
Book
Google Scholar
Segre D, Shenhav B, Kafri R, Lancet D: The molecular roots of compositional inheritance. J Theor Biol. 2001, 213 (3): 481-491. 10.1006/jtbi.2001.2440.
Article
PubMed
CAS
Google Scholar
Moran PAP: Random processes in genetics. Math Proc Camb Philos Soc. 1958, 54 (01): 60-71. 10.1017/S0305004100033193.
Article
Google Scholar
Vasas V, Szathmáry E, Santos M: Lack of evolvability in self-sustaining autocatalytic networks constraints metabolism-first scenarios for the origin of life. Proc Natl Acad Sci U S A. 2010, 107 (4): 1470-1475. 10.1073/pnas.0912628107.
Article
PubMed
CAS
PubMed Central
Google Scholar