Sun Z, Wan D, Murphy RW, Ma L, Zhang X, Huang D: Comparison of base composition and codon usage in insect mitochondrial genomes. Genes Genom. 2009, 31 (1): 65-71. 10.1007/BF03191139.
Article
CAS
Google Scholar
Sharp MP, Li W: Codon usage in regulatory genes in Escherichia coli does not reflect selection for rare codons. Nucleic Acids Research. 1986, 14 (19): 7737-7749. 10.1093/nar/14.19.7737.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bulmer M: The selection-mutation-drift theory of synonymous codon usage. Genetics. 1991, 129 (3): 897-907.
PubMed
CAS
PubMed Central
Google Scholar
Peden JF: Analysis of Codon Usage. PhD thesis. Nottingham University, Department of Genetics; 1999.
Francino HP, Ochman H: Isochores result from mutation not selection. Nature. 1999, 400: 30-31. 10.1038/21804.
Article
PubMed
CAS
Google Scholar
Powell JR, Moriyama EN: Evolution of codon usage bias in Drosophila . Proc Natl Acad Sci U S A. 1997, 94: 7784-7790. 10.1073/pnas.94.15.7784.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang HC, Hickey DA: Rapid divergence of codon usage patterns within the rice genome. BMC Evol Biol. 2007, 7 (1): S6-10.1186/1471-2148-7-S1-S6.
Article
PubMed
PubMed Central
Google Scholar
Ingvarsson PK: Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula. Mol Biol Evol. 2007, 24: 836-844. 10.1093/molbev/msl212.
Article
PubMed
CAS
Google Scholar
Zhu B, Liu Q, Dai L, Wang L, Sun Y, Lin K, Wei G, Liu C: Characterization of the complete mitochondrial genome of Diaphania pyloalis (Lepidoptera: Pyralididae). Gene. 2013, 527 (1): 283-291. 10.1016/j.gene.2013.06.035.
Article
PubMed
CAS
Google Scholar
Sima Y, Chen M, Yao R, Li Y, Liu T, Jin X, Wang L, Su J, Li X, Liu Y: The complete mitochondrial genome of the Ailanthus silkmoth, Samia cynthia cynthia (Lepidoptera: Saturniidae). Gene. 2013, 526 (2): 309-317. 10.1016/j.gene.2013.05.048.
Article
PubMed
CAS
Google Scholar
Dai L, Zhu B, Liu Q, Wei G, Liu C: Characterization of the complete mitochondrial genome of Bombyx mori strain H9 (Lepidoptera: Bombycidae). Gene. 2013, 519 (2): 326-334. 10.1016/j.gene.2013.02.002.
Article
PubMed
CAS
Google Scholar
Kobayashi N, Takahashi M, Kihara S, Niimi T, Yamashita O, Yaginuma T: Cloning of cDNA encoding a Bombyx mori homolog of human oxidation resistance 1 (OXR1) protein from diapause eggs, and analyses of its expression and function. J Insect Physiol. 2014, 68: 58-68. 10.1016/j.jinsphys.2014.06.020.
Article
PubMed
CAS
Google Scholar
Ihara H, Okada T, Ikeda Y: Cloning, expression and characterization of Bombyx mori α1,6-fucosyltransferase. Biochem Bioph Res Co. 2014, 450 (2): 953-960. 10.1016/j.bbrc.2014.06.087.
Article
CAS
Google Scholar
Cai X, Yu J, Yu H, Liu Y, Fang Y, Ren Z, Jia J, Zhang G, Guo X, Jin B, Gui Z: Core promoter regulates the expression of cathepsin B gene in the fat body of Bombyx mori . Gene. 2014, 542 (2): 232-239. 10.1016/j.gene.2014.03.012.
Article
PubMed
CAS
Google Scholar
Zhou Y, Chen H, Li X, Wang Y, Chen K, Zhang S, Meng X, Lee EYC, Lee MYWT: Production of recombinant human DNA polymerase delta in a Bombyx Mori bioreactor. PLoS One. 2011, 6 (7): e22224-10.1371/journal.pone.0022224.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jiang L, Zhao P, Cheng T, Sun Q, Peng Z, Dang Y, Wu X, Wang G, Jin S, Lin P, Xia Q: A transgenic animal with antiviral properties that might inhibit multiple stages of infection. Antivir Res. 2013, 98: 171-173. 10.1016/j.antiviral.2013.02.015.
Article
PubMed
CAS
Google Scholar
Jiang L, Zhao P, Wang G, Cheng T, Yang Q, Jin S, Lin P, Xiao Y, Sun Q, Xia Q: Comparison of factors that may affect the inhibitory efficacy of transgenic RNAi targeting of baculoviral genes in silkworm. Bombyx mori Antivir Res. 2013, 97 (3): 255-263.
PubMed
CAS
Google Scholar
Jiang L, Xia Q: The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori . Insect Biochem Molec. 2014, 48: 1-7. 10.1016/j.ibmb.2014.02.003.
Article
CAS
Google Scholar
Arunkumar KP, Metta M, Nagaraju J: Molecular phylogeny of silkmoths reveals the origin of domesticated silkmoth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol. 2006, 40 (2): 419-427. 10.1016/j.ympev.2006.02.023.
Article
PubMed
CAS
Google Scholar
Maekawa H, Takada N, Mikitani K, Ogura T, Miyajima N, Fujiwara H, Kobayashi M, Ninaki O: Nucleolus organizers in the wild silkworm Bombyx mandarina and the domesticated silkworm B. mori . Chromosoma. 1988, 96 (4): 263-269. 10.1007/BF00286912.
Article
CAS
Google Scholar
Li D, Guo Y, Shao H, Tellier LC, Wang J, Xiang Z, Xia Q: Genetic diversity, molecular phylogeny and selection evidence of the silkworm mitochondria implicated by complete resequencing of 41 genomes. BMC Evol Biol. 2010, 10: 81-10.1186/1471-2148-10-81.
Article
PubMed
PubMed Central
Google Scholar
Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, Pan G, Xu J, Liu C, Lin Y, Qian J, Hou Y, Wu Z, Li G, Pan M, Li C, Shen Y, Lan X, Yuan L, Li T, Xu H, Yang G, Wan Y, Zhu Y, Yu M, Shen W, et al: A draft sequence for the genome of the domesticated silkworm (Bombyx Mori). Science. 2004, 306 (5703): 1937-1940. 10.1126/science.1102210.
Article
PubMed
Google Scholar
Mita K, Yasukochi Y, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Hiroaaki A, Shimada T, Morishita S, Sasaki T: The genome sequence of silkworm, Bombyx mori . DNA research: an international journal for rapid publication of reports on genes and genomes. 2004, 11 (1): 27-35. 10.1093/dnares/11.1.27.
Article
CAS
Google Scholar
Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R, Cheng T, Jiang T, Becquet C, Xu X, Liu C, Zha X, Fan W, Lin Y, Shen Y, Jiang L, Jensen J, Hellmann I, Tang S, Zhao P, Xu H, Yu C, Zhang G, Li J, Cao J, Liu SHe N, et al: Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx) . Science. 2009, 326 (5951): 433-436. 10.1126/science.1176620.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hebert PD, Cywinska A, Ball SL, de Waard JR: Biological identifications through DNA barcodes. Proc Biol Sci. 2003, 270: 313-321. 10.1098/rspb.2002.2218.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhu LX, Wu XB: Phylogenetic evaluation of the taxonomic status of Papilio maackii and P. syfanius (Lepidoptera: Papilionidae). Zool Res. 2011, 32: 248-254.
PubMed
Google Scholar
Gissi C, Iannelli F, Pesole G: Evolution of the mitochondrial genome of Metazoa as exemplified bycomparison of congeneric species. Heredity. 2008, 101: 301-320. 10.1038/hdy.2008.62.
Article
PubMed
CAS
Google Scholar
Curole JP, Kocher TD: Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol. 1999, 14 (10): 394-398. 10.1016/S0169-5347(99)01660-2.
Article
PubMed
Google Scholar
Barton N, Jones JS: Evolutionary biology: Mitochondrial DNA: new clues about evolution. Nature. 1983, 306: 317-318. 10.1038/306317a0.
Article
PubMed
CAS
Google Scholar
Galtier N, Nabholz B, Glemin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol. 2009, 18 (22): 4541-4550. 10.1111/j.1365-294X.2009.04380.x.
Article
PubMed
CAS
Google Scholar
Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y: Significant levels of sequence divergence and gene Rearrangements have occurred between the mitochondrial Genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori . Mol Biol Evol. 2002, 19 (8): 1385-1389. 10.1093/oxfordjournals.molbev.a004200.
Article
PubMed
CAS
Google Scholar
Wei S, Li Q, van Achterberg K, Chen X: Two mitochondrial genomes from the families Bethylidae and Mutillidae: Independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. Mol Phylogenet Evol. 2014, 77: 1-10. 10.1016/j.ympev.2014.03.023.
Article
PubMed
CAS
Google Scholar
Harrison RG: Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol. 1989, 4 (1): 6-11. 10.1016/0169-5347(89)90006-2.
Article
PubMed
CAS
Google Scholar
Boore JL: Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27 (8): 1767-1780. 10.1093/nar/27.8.1767.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kawabe A, Miyashita NT: Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Syst. 2003, 78 (5): 343-352. 10.1266/ggs.78.343.
Article
PubMed
CAS
Google Scholar
Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature. 2006, 440 (7084): 623-630. 10.1038/nature04546.
Article
PubMed
CAS
Google Scholar
Wise CA, Sraml M, Easteal S: Departure from neutrality at the mitochondrial NADH dehydrogenase subunit 2 gene in humans, but not in chimpanzees. Genetics. 1998, 148 (1): 409-421.
PubMed
CAS
PubMed Central
Google Scholar
Rand DM, Kann LM: Mutation and selection at silent and replacement sites in the evolution of animal mitochondrial DNA. Genetica (Dordrecht). 1998, 102–103: 393-407.
Google Scholar
David MR, Michele D, Lisa MK: Neutral and nonneutral evolution of drosophila mitochondrial DNA. Genetics. 1994, 138: 741-756.
Google Scholar
Nachman MW, Brown WM, Stoneking M, Aquadro CF: Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics. 1996, 142 (3): 953-963.
PubMed
CAS
PubMed Central
Google Scholar
Ballard J, Kreitman JW: Unraveling selection in the mitochondrial genome of Drosophila . Genetics. 1994, 138 (3): 757-772.
PubMed
CAS
PubMed Central
Google Scholar
Rand DM, Haney RA, Fry AJ: Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol. 2004, 19 (12): 645-653. 10.1016/j.tree.2004.10.003.
Article
PubMed
Google Scholar
Dowling D, Friberg U, Lindell J: Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol. 2008, 23 (10): 546-554. 10.1016/j.tree.2008.05.011.
Article
PubMed
Google Scholar
Gemmell NJ, Metcalf VJ, Allendorf FW: Mothers curse the effect of mtDNA on individual fitness and population viability. Trends in Ecology and Evolution. 2004, 19 (5): 238-244. 10.1016/j.tree.2004.02.002.
Article
PubMed
Google Scholar
Blier PU, Dufresne F, Burton RS: Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet. 2001, 17 (7): 400-406. 10.1016/S0168-9525(01)02338-1.
Article
PubMed
CAS
Google Scholar
Meiklejohn CD, Montooth KL, Rand DM: Positive and negative selection on the mitochondrial genome. Trends Genet. 2007, 23 (6): 259-263. 10.1016/j.tig.2007.03.008.
Article
PubMed
CAS
Google Scholar
Ballard J, Rand DM: The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst. 2005, 36: 621-642. 10.1146/annurev.ecolsys.36.091704.175513.
Article
Google Scholar
Burton RS, Ellison CK, Harrison JS: The sorry state of F2 hybrids: consequences of rapid mitochondrial DNA evolution in allopatric populations. Am Nat. 2006, 168 (Suppl 6): S14-S24. 10.1086/509046.
Article
PubMed
Google Scholar
Rand DM: The Units of Selection of Mitochondrial DNA. Annu Rev Ecol Syst. 2001, 32: 415-448. 10.1146/annurev.ecolsys.32.081501.114109.
Article
Google Scholar
Pesole G, Gissi C, De Chirico A, Saccone C: Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol. 1999, 48 (4): 427-434. 10.1007/PL00006487.
Article
PubMed
CAS
Google Scholar
Wright F: The ‘effective number of codons’ used in a gene. Gene. 1990, 87 (1): 23-29. 10.1016/0378-1119(90)90491-9.
Article
PubMed
CAS
Google Scholar
Tao P, Dai L, Luo M, Tang F, Tien P, Pan Z: Analysis of synonymous codon usage in classical swine fever virus. Virus Genes. 2009, 38 (1): 104-112. 10.1007/s11262-008-0296-z.
Article
PubMed
CAS
Google Scholar
Liu YS, Zhou JH, Chen HT, Ma LN, Pejsak Z, Ding YZ, Zhang J: The characteristics of the synonymous codon usage in enterovirus 71 virus and the effects of host on the virus in codon usage pattern. Infect Genet Evol. 2011, 11 (5): 1168-1173. 10.1016/j.meegid.2011.02.018.
Article
PubMed
CAS
Google Scholar
Duret L, Mouchiroud D: Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis . Proc Natl Acad Sci U S A. 1999, 96 (8): 4482-4487. 10.1073/pnas.96.8.4482.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qiu S, Bergero R, Zeng K, Charlesworth D: Patterns of codon usage Bias in Silene latifolia . Mol Biol Evol. 2010, 28 (1): 771-780. 10.1093/molbev/msq251.
Article
PubMed
Google Scholar
Comeron JM, Aguade M: An evaluation of measures of synonymous codon usage bias. J Mol Evol. 1998, 47 (3): 268-274. 10.1007/PL00006384.
Article
PubMed
CAS
Google Scholar
Jia W, Higgs PG: Codon usage in mitochondrial genomes: distinguishing context-dependent mutation from translational selection. Mol Biol Evol. 2008, 25 (2): 339-351. 10.1093/molbev/msm259.
Article
PubMed
CAS
Google Scholar
Wright SI: Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol Biol Evol. 2004, 21 (9): 1719-1726. 10.1093/molbev/msh191.
Article
PubMed
CAS
Google Scholar
Zhang Z, Li J, Cui P, Ding F, Li A, Townsend JP, Yu J: Codon deviation coefficient: a novel measure for estimating codon usage bias and its statistical significance. BMC Bioinformatics. 2012, 13: 43-10.1186/1471-2105-13-43.
Article
PubMed
PubMed Central
Google Scholar
Ikemura T: Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985, 2 (1): 13-34.
PubMed
CAS
Google Scholar
Hou ZC, Yang N: Factors affecting codon usage in Yersinia pestis . Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003, 35 (6): 580-586.
CAS
Google Scholar
Moriyama EN, Powell JR: Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli . Nucleic Acids Res. 1998, 26 (13): 3188-3193. 10.1093/nar/26.13.3188.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miyasaka H: Translation initiation AUG context varies with codon usage bias and gene length in Drosophila melanogaster . J Mol Evol. 2002, 55 (1): 52-64. 10.1007/s00239-001-0090-1.
Article
PubMed
CAS
Google Scholar
Liu S, Xue D, Cheng R, Han H: The complete mitogenome of Apocheima cinerarius (Lepidoptera: Geometridae: Ennominae) and comparison with that of other Lepidopteran insects. Gene. 2014, 547: 136-144. 10.1016/j.gene.2014.06.044.
Article
PubMed
CAS
Google Scholar
Roychoudhury S, Mukherjee D: A detailed comparative analysis on the overall codon usage pattern in herpesviruses. Virus Res. 2010, 148 (1–2): 31-43. 10.1016/j.virusres.2009.11.018.
Article
PubMed
CAS
Google Scholar
Bennetzen JL, Hall BD: Codon selection in yeast. The Journal of biological chemistry. 1982, 257 (6): 3026-3031.
PubMed
CAS
Google Scholar
Sharp PM, Tuohy TM, Mosurski KR: Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res. 1986, 14 (13): 5125-5143. 10.1093/nar/14.13.5125.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157 (1): 105-132. 10.1016/0022-2836(82)90515-0.
Article
PubMed
CAS
Google Scholar
Lobry JR, Gautier C: Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res. 1994, 22 (15): 3174-3180. 10.1093/nar/22.15.3174.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gupta SK, Ghosh TC: Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa . Gene. 2001, 273 (1): 63-70. 10.1016/S0378-1119(01)00576-5.
Article
PubMed
CAS
Google Scholar
Grantham R, Gautier C, Gouy M, Mercier R, Pave A: Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980, 8 (1): r49-r62. 10.1093/nar/8.1.197-c.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sharp PM, Devine KM: Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do ‘prefer’ optimal codons. Nucleic Acids Res. 1989, 17 (13): 5029-5039. 10.1093/nar/17.13.5029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shields DC, Sharp PM: Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 1987, 15 (19): 8023-8040. 10.1093/nar/15.19.8023.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sueoka N: Directional mutation pressure and neutral molecular evolution. P Natl Acad Sci USA. 1988, 85 (8): 2653-2657. 10.1073/pnas.85.8.2653.
Article
CAS
Google Scholar
Sueoka N: Two aspects of DNA base composition: G + C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol. 1999, 49 (1): 49-62. 10.1007/PL00006534.
Article
PubMed
CAS
Google Scholar