Gill FB: Ornithology. 1995, W.H. Freeman and Company, New York
Google Scholar
Bell E, Thathachari YT: Development of feather keratin during embryogenesis of the chick. J Cell Biol. 1963, 16 (2): 215-223. 10.1083/jcb.16.2.215.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baden HP, Maderson PFA: Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool. 1970, 174: 225-232. 10.1002/jez.1401740211.
Article
PubMed
CAS
Google Scholar
Haake AR, Kӧnig G, Sawyer RH: Avian feather development: relationships between morphogenesis and keratinization. Dev Biol. 1984, 106: 406-413. 10.1016/0012-1606(84)90240-9.
Article
PubMed
CAS
Google Scholar
Rogers GE: Gene for hair and avian keratins. Ann N Y Acad Sci. 1985, 455: 403-425. 10.1111/j.1749-6632.1985.tb50425.x.
Article
PubMed
CAS
Google Scholar
Bereiter-Hahn J, Matoltsy AG, Richards KS: Biology of the Integument 2 Vertebrates. 1986, Springer-Verlag, Berlin
Book
Google Scholar
Vandebergh W, Bossuyt F: Radiation and functional diversification of alpha keratins during early vertebrate evolution. Mol Biol Evol. 2012, 29 (3): 995-1004. 10.1093/molbev/msr269.
Article
PubMed
CAS
Google Scholar
Greenwold MJ, Sawyer RH: Genomic organization and molecular phylogenies of the beta (β) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol. 2010, 10: 148-10.1186/1471-2148-10-148.
Article
PubMed
PubMed Central
Google Scholar
Greenwold MJ, Sawyer RH: Molecular evolution and expression of archosaurian β-keratins: Diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins. J Exp Zool (Mol Dev Evol). 2013, 320B: 393-405. 10.1002/jez.b.22514.
Article
Google Scholar
Li YI, Kong L, Ponting CP, Haerty W: Rapid evolution of beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol. 2013, 5 (5): 923-933. 10.1093/gbe/evt060.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lee LD, Baden HP: Organization of the polypeptide chains in mammalian keratin. Nature. 1976, 264: 377-379. 10.1038/264377a0.
Article
PubMed
CAS
Google Scholar
Hatzfeld M, Franke WW: Pair formation and promiscuity of cytokeratins: formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol. 1985, 101: 1826-1841. 10.1083/jcb.101.5.1826.
Article
PubMed
CAS
Google Scholar
Fuchs E, Marchuk D: Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc Natl Acad Sci U S A. 1983, 80: 5857-5861. 10.1073/pnas.80.19.5857.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rice RH, Winters BR, Durbin-Johnson BP, Rocke DM: Chicken corneocyte cross-linked proteome. J Proteome Res. 2012, 12: 771-776. 10.1021/pr301036k.
Article
Google Scholar
O’Guin MW, Sawyer RH: Avian scale development: VIII. Relationships between morphogenetic and biosynthetic differentiation. Dev Biol. 1982, 89: 485-492. 10.1016/0012-1606(82)90336-0.
Article
PubMed
Google Scholar
Sawyer RH, Knapp LW, O’Guin WM: Epidermis, Dermis and Appendages. Biology of the Integument 2 Vertebrates. Edited by: Bereiter-Hahn J, Matoltsy AG, Richards KS. 1986, Springer-Verlag, Berlin, 194-238. 10.1007/978-3-662-00989-5_11.
Chapter
Google Scholar
Smoak DK, Sawyer RH: Avian spur development: abnormal morphogenesis and Keratinization in the Scaleless (sc/sc) mutant. Trans Am Microsc Soc. 1983, 102 (2): 135-144. 10.2307/3225883.
Article
CAS
Google Scholar
Carver WE, Sawyer RH: Avian scale development: XI. Immunoelectron microscopic localization of α and β Keratins in the Scutate Scale. J Morphol. 1988, 195: 31-43. 10.1002/jmor.1051950104.
Article
PubMed
CAS
Google Scholar
Shames RB, Knapp LW, Carver WE, Washington LD, Sawyer RH: Keratinization of the outer surface of the avian scutate scale: interrelationship of alpha and beta keratin filaments in a cornifying tissue. Cell Tissue Res. 1989, 257: 85-92. 10.1007/BF00221637.
Article
PubMed
CAS
Google Scholar
Carver WE, Sawyer RH: Immunocytochemical localization and biochemical analysis of α and β keratins in the avian lingual epithelium. Am J Anat. 1989, 184: 66-75. 10.1002/aja.1001840108.
Article
PubMed
CAS
Google Scholar
Knapp LW, Shames RB, Barnes GL, Sawyer RH: Region-specific patterns of beta keratin expression during avian skin development. Dev Dyn. 1993, 196: 283-290. 10.1002/aja.1001960411.
Article
PubMed
CAS
Google Scholar
Ng CS, Wu P, Foley J, Foley A, McDonald M, Juan W, Huang C, Lai Y, Lo W, Chen C, Leal SM, Zhang H, Widelitz RB, Patel PI, Li W, Chuong C: The chicken frizzle feather is due to an α-keratin (KRT75) mutation that causes a defective rachis. PLoS Genet. 2012, 8 (7): e1002748-10.1371/journal.pgen.1002748.
Article
PubMed
CAS
PubMed Central
Google Scholar
Walker ID, Rogers GE: Differentiation in Avian Keratinocytes. Eur J Biochem. 1976, 69: 329-339. 10.1111/j.1432-1033.1976.tb10917.x.
Article
CAS
Google Scholar
Walker ID, Rogers GE: The structural basis for the heterogeneity of chick down feather keratin. Eur J Biochem. 1976, 69: 341-350. 10.1111/j.1432-1033.1976.tb10918.x.
Article
CAS
Google Scholar
Powell BC, Rogers GE: Isolation of messenger RNA coding for the “fast” protein of embryonic chick feathers. Nucleic Acids Res. 1979, 8: 2165-2176. 10.1093/nar/7.8.2165.
Article
Google Scholar
Alibardi L, Sawyer RH: Cell structure of developing down feathers in the zebrafinch with emphasis on barb ridge morphogenesis. J Anat. 2006, 208 (5): 621-642. 10.1111/j.1469-7580.2006.00580.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Alibardi L: Immunolocalization of alpha-keratins and feather beta-keratins in feather cells and comparison with the general process of cornification in the skin of mammals. Ann Anat. 2013, 195: 189-198. 10.1016/j.aanat.2012.08.005.
Article
PubMed
CAS
Google Scholar
Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S: Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene. 2014, 542: 23-28. 10.1016/j.gene.2014.03.027.
Article
PubMed
CAS
Google Scholar
Presland RB, Gregg K, Molloy PL, Morris CP, Crocker LA, Rogers GE: Avian keratin genes I: a molecular analysis of the structure and expression of a group of feather keratin genes. J Mol Biol. 1989, 209: 549-559. 10.1016/0022-2836(89)90593-7.
Article
PubMed
CAS
Google Scholar
Presland RB, Whitbread LA, Rogers GE: Avian keratin genes II: chromosomal arrangement and close linkage of three gene families. J Mol Biol. 1989, 209: 561-576. 10.1016/0022-2836(89)90594-9.
Article
PubMed
CAS
Google Scholar
Whitbread LA, Gregg K, Rogers GE: The structure and expression of a gene encoding chick claw keratin. Gene. 1991, 101: 223-229. 10.1016/0378-1119(91)90415-8.
Article
PubMed
CAS
Google Scholar
Vanhoutteghem A, Londero T, Djian P, Ghinea N: Serial cultivation of chicken keratinocytes, a composite cell type that accumulates lipids and synthesizes a novel β-keratin. Differentiation. 2004, 72 (4): 123-137. 10.1111/j.1432-0436.2004.07204002.x.
Article
PubMed
CAS
Google Scholar
Dalla Valle L, Nardi A, Gelmi C, Toni M, Emera D, Alibardi L: β-Keratins of the Crocodilian epidermis: composition, structure, and phylogenetic relationships. J Exp Zool (Mol Dev Evol). 2009, 312B: 42-57. 10.1002/jez.b.21241.
Article
CAS
Google Scholar
Dalla Valle L, Nardi A, Toni M, Emera D, Alibardi L: Beta-keratins of turtle shell are glycine-proline-tyrosine rich proteins similar to those of crocodilians and birds. J Anat. 2009, 214: 284-300. 10.1111/j.1469-7580.2008.01030.x.
Article
PubMed
CAS
Google Scholar
Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emera D, Alibardi L: Forty keratin associated β-proteins (β-keratins) form the hard layers of scales, claws, and adhesive pads in the green anole lizard, Anolis. J Exp Zool (Mol Dev Evol). 2010, 314B: 11-32. 10.1002/jez.b.21306.
Article
CAS
Google Scholar
Greenwold MJ, Sawyer RH: Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J Exp Zool (Mol Dev Evol). 2011, 316: 609-616. 10.1002/jez.b.21436.
Article
CAS
Google Scholar
Hartl M, Bister K: Specific activation in jun-transformed avian fibroblasts of a gene (bkj) related to the avian β-keratin gene family. Proc Natl Acad Sci U S A. 1995, 92: 11731-11735. 10.1073/pnas.92.25.11731.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hesse M, Zimek A, Weber K, Magin TM: Comprehensive analysis of keratin gene clusters in humans and rodents. Eur J Cell Biol. 2004, 83: 19-26. 10.1078/0171-9335-00354.
Article
PubMed
CAS
Google Scholar
Zimek A, Weber K: Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish. Eur J Cell Biol. 2005, 84: 623-635. 10.1016/j.ejcb.2005.01.007.
Article
PubMed
CAS
Google Scholar
Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor R, Jaffe JD, Ray DA, Boissinot S, Botka C, Castoe T, Colbourne JK, Fujita MK, Moreno GR, ten Hallers BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Novick P, Organ CL, Peach SE, Poe S, Pollack DD, et al: The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011, 477: 587-591. 10.1038/nature10390.
Article
PubMed
PubMed Central
Google Scholar
Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, et al: Comparative genomics across modern bird species reveal insights into avian genome evolution and adaptation. Submitted to Science 2014
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, da Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Capella-Gutiérrez S, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, et al: Whole genome analyses resolve the early branches in the tree of life of modern birds. In press Science 2014
St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed’Hom B, Abzhanov A, Burgess SC, Cooksey AM, Castoe TA, Crawford NG, Densmore LD, Drew JC, Edwards SV, Faircloth BC, Fujita MK, Greenwold MJ, Hoffmann FG, Howard JM, Iguchi T, Janes DE, Khan SY, Kohno S, de Koning AP J, Lance SL, McCarthy FM, McCormack JE, et al: Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol. 2012, 13: 415-10.1186/gb-2012-13-1-415.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, et al: The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat Genet. 2013, 45 (6): 701-706. 10.1038/ng.2615.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, Maltais L, Omary MB, Parry DAD, Rogers MA, Wright MW: New consensus nomenclature for mammalian keratins. J Cell Biol. 2006, 174 (2): 169-174. 10.1083/jcb.200603161.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moll R, Divo M, Langbein L: The human keratins: biology and pathology. Histochem Cell Biol. 2008, 129 (6): 705-733. 10.1007/s00418-008-0435-6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Heller S, Sheane CA, Javed Z, Hudspeth AJ: Molecular markers for cell types of the inner ear and candidate genes for hearing disorders. Proc Natl Acad Sci U S A. 1998, 95: 11400-11405. 10.1073/pnas.95.19.11400.
Article
PubMed
CAS
PubMed Central
Google Scholar
Landauer W, Dunn LC: The “frizzle” character of fowls, its expression and inheritance. J Hered. 1930, 21: 290-305.
Google Scholar
Blumenberg M: Concerted gene duplications in the two keratin gene families. J Mol Evol. 1988, 27: 203-211. 10.1007/BF02100075.
Article
PubMed
CAS
Google Scholar
Li X, Chiang H, Zhu J, Dowd SE, Zhou H: Characterization of a newly developed chicken 44 K Agilent microarray. BMC Genomics. 2008, 9: 60-10.1186/1471-2164-9-60.
Article
PubMed
PubMed Central
Google Scholar
Lucas AM, Stettenheim PR: Avian Anatomy – Integument. Agricultural Handbook 362. 1972, Agricultural Research Services: US Department of Agriculture, Washington DC
Google Scholar
Sengel P: Morphogenesis of skin. 1976, Cambridge University Press, Cambridge
Google Scholar
Sawyer RH: Avian scale development. I. Histogenesis and morphogenesis of the epidermis and dermis during formation of the scale ridge. J Exp Zool. 1972, 181: 365-383. 10.1002/jez.1401810307.
Article
Google Scholar
Sawyer RH, Fallon JF: Epithelial-mesenchymal interactions in development. 1983, Praeger Publishers, New York
Google Scholar
Shames RB, Sawyer RH: Expression of β-keratin genes during skin development in normal and sc/sc chick embryos. Dev Biol. 1986, 116 (1): 15-22. 10.1016/0012-1606(86)90038-2.
Article
PubMed
CAS
Google Scholar
Shames RB, Sawyer RH: Chapter 11, Expression of β-keratin Genes during Development of Avian Skin Appendages. Current Topics in Developmental Biology. Edited by: Moscona AA, Monroy A. 1987, Academic Press, Inc, New York, 235-253.
Google Scholar
Ng CS, Wu P, Fan W, Yan J, Chen C, Lai Y, Wu S, Mao C, Chen J, Lu MJ, Ho M, Widelitz RB, Chen C, Chuong C, Li W: Genomic organization, transcriptomics analysis, and functional characterization of avian α- and β-keratins in diverse feather forms. Genome Biol Evol 2014, doi:10.1093/gbe/evu181.,
Burt A, Bell G: Mammalian chiasma frequencies as a test of two theories of recombination. Nature. 1987, 326: 803-805. 10.1038/326803a0.
Article
PubMed
CAS
Google Scholar
Ross-Ibarra J: The evolution of recombination under domestication: a test of two hypotheses. Am Nat. 2004, 163: 105-112. 10.1086/380606.
Article
PubMed
Google Scholar
Kemp DJ, Rogers GE: Differentiation of avian keratinocytes. Characterization and relations of the keratin proteins of adult and embryonic feathers and scales. Biochemistry. 1972, 11 (6): 969-975. 10.1021/bi00756a005.
Article
PubMed
CAS
Google Scholar
Walker ID, Bridgen J: The Keratin Chains of avian scale tissue. Eur J Biochem. 1976, 67: 283-293. 10.1111/j.1432-1033.1976.tb10660.x.
Article
PubMed
CAS
Google Scholar
Kemp DJ: Unique and repetitive sequences in multiple genes for feather keratin. Nature. 1975, 254: 573-577. 10.1038/254573a0.
Article
PubMed
CAS
Google Scholar
Gregg K, Rogers GE: Feather Keratin: Composition, Structure, and Biogenesis. Biology of the Integument, Vol. 2. Vertebrates. Edited by: Bereiter-Hahn J, Maltotsy AG, Richards KS. 1986, Springer-Verlag, New York, 666-694. 10.1007/978-3-662-00989-5_33.
Chapter
Google Scholar
Shames RB, Knapp LW, Carver WE, Sawyer RH: Identification, expression, and localization of β keratin gene products during development of avian scutate scales. Differentiation. 1988, 38 (2): 115-123. 10.1111/j.1432-0436.1988.tb00205.x.
Article
PubMed
CAS
Google Scholar
Knapp LW, Linser PJ, Carver WE, Sawyer RH: Biochemical identification and immunological localization of two non-keratin polypeptides associated with the terminal differentiation of avian scale epidermis. Cell Tissue Res. 1991, 265 (3): 535-545. 10.1007/BF00340877.
Article
PubMed
CAS
Google Scholar
Zhang L, Nie Q, Su Y, Xie X, Luo W, Jia X, Zhang X: MicroRNA profile analysis on duck feather follicle and skin with high-throughput sequencing technology. Gene. 2013, 519: 77-81. 10.1016/j.gene.2013.01.043.
Article
PubMed
CAS
Google Scholar
Csermely D, Rossi O: Bird claws and bird of prey talons: where is the difference?. Ital J Zool. 2006, 73: 43-53. 10.1080/11250000500502368.
Article
Google Scholar
Fowler DW, Freedman EA, Scannella JB: Predatory functional morphology in raptors: interdigital variation in talon size is related to prey restraint and immobilisation technique. PLoS ONE. 2009, 4 (11): e7999-10.1371/journal.pone.0007999.
Article
PubMed
PubMed Central
Google Scholar
Birn-Jeffery AV, Miller CE, Naish D, Rayfield EJ, Hone DWE: Pedal claw curvature in birds, lizards and mesozoi dinosaurs – complicated categories and compensating for mass-specific and phylogenetic control. PLoS ONE. 2012, 7 (12): e50555-10.1371/journal.pone.0050555.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wu P, Jiang T, Suksaweang S, Widelitz RB, Chuong C: Molecular shaping of the beak. Science. 2004, 305: 1465-1466. 10.1126/science.1098109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rijke AM: Wettability and phylogenetic development of feather structure in water birds. J Exp Biol. 1970, 52: 469-479.
Google Scholar
O’Donnell IJ, Inglis AS: Amino acid sequence of a feather keratin from Silver Gull (Larus novae-hollandiae) and comparison with one from Emu (Dromaius novae-hollandiae). Aust J Biol Sci. 1974, 27: 369-382.
PubMed
Google Scholar
Shedlock AM, Edwards SV: Amniotes (Amniota). The Timetree of Life. Edited by: Hedges SB, Kumar S. 2009, Oxford Univ. Press, New York, 375-379.
Google Scholar
Kent JW: BLAT-The BLAST-like alignment tool. Genome Res. 2002, 12: 656-664. 10.1101/gr.229202. Article published online before March 2002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Birney E, Clamp M, Durbin R: GeneWise and Genomewise. Genome Res. 2004, 14: 988-995. 10.1101/gr.1865504.
Article
PubMed
CAS
PubMed Central
Google Scholar
Garland T, Dickerman AW, Janis CM, Jones JA: Phylogenetic analysis of covariance by computer simulation. Syst Biol. 1993, 42 (3): 265-292. 10.1093/sysbio/42.3.265.
Article
Google Scholar
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W: GEIGER: investigating evolutionary radiations. Bioinformatics. 2008, 24: 129-131. 10.1093/bioinformatics/btm538.
Article
PubMed
CAS
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446.
Article
PubMed
CAS
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21 (9): 2104-2105. 10.1093/bioinformatics/bti263.
Article
PubMed
CAS
Google Scholar
Larkin MA, Blackshields G, Bown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
PubMed
CAS
Google Scholar