Rowe L, Houle D: The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B. 1996, 263: 1415-1421. 10.1098/rspb.1996.0207.
Article
Google Scholar
Wilcoxen TE, Boughton RK, Schoech SJ: Selection on innate immunity and body condition in Florida scrub-jays throughout an epidemic. Biol Lett. 2010, 6: 552-554. 10.1098/rsbl.2009.1078.
Article
PubMed
PubMed Central
Google Scholar
Milot E, Cohen AA, Vézina F, Buehler DM, Matson KD, Piersma T: A novel integrative method for measuring body condition in ecological studies based on physiological dysregulation. Methods Ecol Evol. 2014, 5: 146-155. 10.1111/2041-210X.12145.
Article
Google Scholar
Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ: Restitution of mass-size residuals: validating body condition indices. Ecology. 2005, 86: 155-163. 10.1890/04-0232.
Article
Google Scholar
Ardia DR: Super size me: an experimental test of the factors affecting lipid content and the ability of residual body mass to predict lipid stores in nestling European starlings. Funct Ecol. 2005, 19: 414-420. 10.1111/j.1365-2435.2005.00997.x.
Article
Google Scholar
Merilä J, Kruuk LEB, Sheldon BC: Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol. 2001, 14: 918-929. 10.1046/j.1420-9101.2001.00353.x.
Article
Google Scholar
Norris K, Evans MR: Ecological immunology: life history trade-offs and immune defense in birds. Behav Ecol. 2000, 11: 19-26. 10.1093/beheco/11.1.19.
Article
Google Scholar
Tella JL, Scheuerlein A, Ricklefs RE: Is cell-mediated immunity related to the evolution of life-history strategies in birds?. Proc R Soc Lond B. 2002, 269: 1059-1066. 10.1098/rspb.2001.1951.
Article
Google Scholar
Gleeson DJ, Blows MW, Owens IPF: Genetic covariance between indices of body condition and immunocompetence in a passerine bird. BMC Evol Biol. 2005, 5: 61-10.1186/1471-2148-5-61.
Article
PubMed
PubMed Central
Google Scholar
Cichoń M, Sendecka J, Gustafsson L: Genetic and environmental variation in immune response of collared flycatcher nestlings. J Evol Biol. 2006, 19: 1701-1706. 10.1111/j.1420-9101.2006.01110.x.
Article
PubMed
Google Scholar
Birkhead TR, Pellatt EJ, Matthews IM, Roddis NJ, Hunter FM, McPhie F, Castillo-Juarez H: Genic capture and the genetic basis of sexually selected traits in the zebra finch. Evolution. 2006, 60: 2389-2398. 10.1111/j.0014-3820.2006.tb01873.x.
Article
PubMed
Google Scholar
Martin LB, Han P, Lewittes J, Kuhlman JR, Lasing KC, Wikelski M: Phytohemagglutinin-induced skin swelling in birds: histological support for a classic immunoecological technique. Funct Ecol. 2006, 20: 290-299. 10.1111/j.1365-2435.2006.01094.x.
Article
Google Scholar
Tella JL, Lemus JA, Carrete M, Blanco G: The PHA test reflects acquired T-cell mediated immunocompetence in birds. PLoS One. 2008, 3: e3295-10.1371/journal.pone.0003295.
Article
PubMed
PubMed Central
Google Scholar
Vinkler M, Bainová H, Albrecht T: Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct Ecol. 2010, 24: 1081-1086. 10.1111/j.1365-2435.2010.01711.x.
Article
Google Scholar
Vinkler M, Svobodová J, Gabrielová B, Bainová H, Bryjová A: Cytokine expression in phytohaemagglutinin-induced skin inflammation in a galliform bird. J Avian Biol. 2014, 45: 43-50. 10.1111/j.1600-048X.2011.05860.x.
Article
Google Scholar
Hoi-Leitner M, Romero-Pujante M, Hoi H, Pavlova A: Food availability and immune capacity in serin (Serinus serinus) nestlings. Behav Ecol Sociobiol. 2001, 49: 333-339. 10.1007/s002650000310.
Article
Google Scholar
Morrison ES, Ardia DR, Clotfelter ED: Cross-fostering reveals sources of variation in innate immunity and hematocrit in nestling tree swallows Tachycineta bicolor . J Avian Biol. 2009, 40: 573-578. 10.1111/j.1600-048X.2009.04910.x.
Article
Google Scholar
Saino N, Cuervo JJ, Krivacek M, de Lope F, Møller AP: Experimental manipulation of tail ornament size affects the hematocrit of male barn swallows (Hirundo rustica). Oecologia. 1997, 110: 186-190. 10.1007/s004420050148.
Article
Google Scholar
Potti J, Moreno J, Merino S, Frías O, Rodríguez R: Environmental and genetic variation in the haematocrit of fledgling pied flycatchers Ficedula hypoleuca . Oecologia. 1999, 120: 1-8. 10.1007/s004420050826.
Article
Google Scholar
Simon A, Thomas DW, Bourgault P, Blondel J, Perret P, Lambrechts MM: Between-population differences in nestling size and hematocrit level in blue tits (Parus caeruleus): a cross-fostering test for genetic and environmental effects. Can J Zool. 2005, 83: 694-701. 10.1139/z05-059.
Article
Google Scholar
Potti J: Variation in the hematocrit of a passerine bird across life stages is mainly of environmental origin. J Avian Biol. 2007, 38: 726-730. 10.1111/j.2007.0908-8857.04073.x.
Article
Google Scholar
Williams TD: Physiological Adaptations for Breeding in Birds. 2012, Princeton University Press, Princeton
Google Scholar
Forsman AM, Vogel LA, Sakaluk SK, Johnson BG, Masters BS, Johnson LS, Thompson CF: Female house wrens (Troglodytes aedon) increase the size, but not immunocompetence, of their offspring through extra-pair mating. Mol Ecol. 2008, 17: 3697-3706. 10.1111/j.1365-294X.2008.03860.x.
Article
PubMed
Google Scholar
Grana SC, Sakaluk SK, Bowden RM, Doellman MA, Vogel LA, Thompson CF: Reproductive allocation in female house wrens is not influenced by experimentally altered male attractiveness. Behav Ecol Sociobiol. 2012, 66: 1247-1258. 10.1007/s00265-012-1378-4.
Article
Google Scholar
Sutherland JL, Thompson CF, Sakaluk SK: No effect of carotenoid supplementation on PHA response or body condition of nestling house wrens. Physiol Biochem Zool. 2012, 85: 21-28. 10.1086/663353.
Article
PubMed
CAS
Google Scholar
Bowers EK, Smith RA, Hodges CJ, Zimmerman LM, Thompson CF, Sakaluk SK: Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc R Soc B. 2012, 279: 2891-2898. 10.1098/rspb.2012.0443.
Article
PubMed
PubMed Central
Google Scholar
Bowers EK, Hodges CJ, Forsman AM, Vogel LA, Masters BS, Johnson BGP, Johnson LS, Thompson CF, Sakaluk SK: Neonatal body condition, immune responsiveness, and hematocrit predict longevity in a wild bird population. Ecology. 2014, 95: 3027-3034. 10.1890/14-0418.1.
Article
PubMed
PubMed Central
Google Scholar
Falconer DS: Introduction to Quantitative Genetics. 1981, Longman, New York
Google Scholar
Jensen H, Sæther B-E, Ringby TH, Tufto J, Griffith SC, Ellegren H: Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus). J Evol Biol. 2003, 16: 1296-1307. 10.1046/j.1420-9101.2003.00614.x.
Article
PubMed
CAS
Google Scholar
Gienapp P, Merilä J: Genetic and environmental effects on a condition-dependent trait: feather growth in Siberian jays. J Evol Biol. 2010, 23: 715-723. 10.1111/j.1420-9101.2010.01949.x.
Article
PubMed
CAS
Google Scholar
Ardia DR: Cross-fostering reveals an effect of spleen size and nest temperatures on immune responses in nestling European starlings. Oecologia. 2005, 145: 327-334. 10.1007/s00442-005-0120-6.
Article
PubMed
Google Scholar
Drobniak SM, Wiejaczka D, Arct A, Dubiec A, Gustafsson L, Cichoń M: Sex-specific heritability of cell-mediated immune response in the blue tit nestlings (Cyanistes caeruleus). J Evol Biol. 2010, 23: 1286-1292. 10.1111/j.1420-9101.2010.01993.x.
Article
PubMed
Google Scholar
Christe P, Møller AP, Saino N, de Lope F: Genetic and environmental components of phenotypic variation in immune response and body size of a colonial bird, Delichon urbica (the house martin). Heredity. 2000, 85: 75-83. 10.1046/j.1365-2540.2000.00732.x.
Article
PubMed
Google Scholar
Drilling NE, Thompson CF: Mate switching in multibrooded house wrens. Auk. 1991, 108: 60-70.
Google Scholar
Bowers EK, Sakaluk SK, Thompson CF: Experimentally increased egg production constrains future reproduction of female house wrens. Anim Behav. 2012, 83: 495-500. 10.1016/j.anbehav.2011.11.026.
Article
Google Scholar
Soukup SS, Thompson CF: Social mating system affects the frequency of extra-pair paternity in house wrens. Anim Behav. 1997, 54: 1089-1105. 10.1006/anbe.1997.0556.
Article
PubMed
Google Scholar
Johnson LS: House Wren (Troglodytes aedon). The Birds of North America No. 380. Edited by: Poole A, Gill F. 1998, The Birds of North America, Inc, Philadelphia
Google Scholar
Lambrechts MM, Adriaensen F, Ardia DR, Artemyev AV, Atiénzar F, Bańbura J, Barba E, Bouvier J–C, Camprodon J, Cooper CB, Dawson RD, Eens M, Eeva T, Faivre B, Garamszegi LZ, Goodenough AE, Gosler AG, Grégoire A, Griffith SC, Gustafsson L, Johnson LS, Kania W, Keišs O, Llambías PE, Mainwaring MC, Mänd R, Massa B, Mazgajski TD, Møller AP, Moreno J: The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 2010, 45: 1-26. 10.3161/000164510X516047.
Article
Google Scholar
DeMory ML, Thompson CF, Sakaluk SK: Male quality influences male provisioning in house wrens independent of attractiveness. Behav Ecol. 2010, 21: 1156-1164. 10.1093/beheco/arq123.
Article
Google Scholar
Smits JE, Bortolotti GR, Tella JL: Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol. 1999, 13: 567-572. 10.1046/j.1365-2435.1999.00338.x.
Article
Google Scholar
Forsman AM, Sakaluk SK, Thompson CF, Vogel LA: Cutaneous immune activity, but not innate immune responsiveness, covaries with mass and environment in nestling house wrens (Troglodytes aedon). Physiol Biochem Zool. 2010, 83: 512-518. 10.1086/649894.
Article
PubMed
Google Scholar
Bruford MW, Hanotte O, Brookfield JFY, Burke T: Single-Locus and Multilocus DNA Fingerprinting. Molecular Genetic Analysis of Populations. Edited by: Hoelzel AR. 1992, Oxford University Press, Oxford, 225-269.
Google Scholar
Johnson LS, Hicks BG, Masters BS: Increased cuckoldry as a cost of breeding late for male house wrens (Troglodytes aedon). Behav Ecol. 2002, 13: 670-675. 10.1093/beheco/13.5.670.
Article
Google Scholar
Cabe PR, Marshall KE: Microsatellite loci from the house wren (Troglodytes aedon). Mol Ecol Notes. 2001, 1: 155-156. 10.1046/j.1471-8278.2001.00057.x.
Article
CAS
Google Scholar
Double MC, Dawson D, Burke T, Cockburn A: Finding the fathers in the least faithful bird: a microsatellite-based genotyping system for the superb fairy-wren Malurus cyaneus . Mol Ecol. 1997, 6: 691-693. 10.1046/j.1365-294X.1997.00228.x.
Article
CAS
Google Scholar
McDonald DB, Potts WK: Cooperative display and relatedness among males in a lek-mating bird. Science. 1994, 266: 1030-1032. 10.1126/science.7973654.
Article
PubMed
CAS
Google Scholar
Masters BS, Hicks BG, Johnson LS, Erb LA: Genotype and extra-pair paternity in the house wren: a rare-male effect?. Proc R Soc Lond B. 2003, 270: 1393-1397. 10.1098/rspb.2003.2380.
Article
Google Scholar
Kahn NW, John J, St. Quinn TW: Chromosome-specific intron size differences in the avian CHD gene provides an efficient method for sex identification in birds. Auk. 1998, 115: 1074-1078. 10.2307/4089527.
Article
Google Scholar
Kruuk LEB: Estimating genetic parameters in natural populations using the ‘animal model’. Phil Trans R Soc Lond B. 2004, 359: 873-890. 10.1098/rstb.2003.1437.
Article
Google Scholar
Wilson AJ, Réale D, Clements MN, Morrissey MM, Postma E, Walling CA, Kruuk LEB, Nussey DH: An ecologist’s guide to the animal model. J Anim Ecol. 2010, 79: 13-26. 10.1111/j.1365-2656.2009.01639.x.
Article
PubMed
Google Scholar
Visscher PM: A note on the asymptotic distribution of likelihood ratio tests to test variance components. Twin Res Hum Genet. 2006, 9: 490-495. 10.1375/twin.9.4.490.
Article
PubMed
Google Scholar
Price T, Schluter D: On the low heritability of life-history traits. Evolution. 1991, 45: 853-861. 10.2307/2409693.
Article
Google Scholar
Houle D: Comparing evolvability and variability of quantitative traits. Genetics. 1992, 130: 195-204.
PubMed
CAS
PubMed Central
Google Scholar
McCleery RH, Pettifor RA, Armbruster P, Meyer K, Sheldon BC, Perrins CM: Components of variance underlying fitness in a natural population of great tits Parus major . Am Nat. 2004, 164: E62-E72. 10.1086/422660.
Article
PubMed
CAS
Google Scholar
Barnett CA, Thompson CF, Sakaluk SK: Aggressiveness, boldness and parental food provisioning in male house wrens (Troglodytes aedon). Ethology. 2012, 118: 984-993. 10.1111/j.1439-0310.2012.02092.x.
Article
Google Scholar
Pacejka AJ, Gratton CM, Thompson CF: Do potentially virulent mites affect house wren (Troglodytes aedon) reproductive success?. Ecology. 1998, 79: 1797-1806. 10.1890/0012-9658(1998)079[1797:DPVMAH]2.0.CO;2.
Article
Google Scholar
Johnson LS, Albrecht DJ: Effects of haematophagous ectoparasites on nestling house wrens, Troglodytes aedon: who pays the cost of parasitism?. Oikos. 1993, 66: 255-262. 10.2307/3544812.
Article
Google Scholar
Postma E: Four Decades of Estimating Heritabilities in Wild Vertebrate Populations: Improved Methods, More Data, Better Estimates?. Quantitative Genetics in the Wild. Edited by: Charmantier A, Garant D, Kruuk LEB. 2014, Oxford University Press, Oxford, 16-33. 10.1093/acprof:oso/9780199674237.003.0002.
Chapter
Google Scholar
Wheelwright NT, Keller LF, Postma E: The effect of trait type and strength of selection on heritability and evolvability in an island bird population. Evolution. 2014, 68: 3325-3336. 10.1111/evo.12499.
Article
PubMed
Google Scholar
Merilä J, Kruuk LEB, Sheldon BC: Cryptic evolution in a wild bird population. Nature. 2001, 412: 76-79. 10.1038/35083580.
Article
PubMed
Google Scholar
Morrissey MB, Kruuk LEB, Wilson AJ: The danger of applying the breeder’s equation outside of the context of artificial selection. J Evol Biol. 2010, 23: 2277-2288. 10.1111/j.1420-9101.2010.02084.x.
Article
PubMed
CAS
Google Scholar
Pitala N, Gustafsson L, Sendecka J, Brommer JE: Nestling immune response to phytohaemagglutinin is not heritable in collared flycatchers. Biol Lett. 2007, 3: 418-421. 10.1098/rsbl.2007.0135.
Article
PubMed
PubMed Central
Google Scholar
Cucco M, Malacarne G, Ottonelli R, Patrone M: Repeatability of cell-mediated and innate immunity, and other fitness-related traits, in the grey partridge. Can J Zool. 2006, 84: 72-79. 10.1139/z05-179.
Article
Google Scholar
Bonato M, Evans MR, Hasselquist D, Sherley RB, Cloete SWP, Cherry MI: Ostrich chick humoral immune responses and growth rate are predicted by parental immune responses and paternal coloration. Behav Ecol Sociobiol. 2013, 67: 1891-1901. 10.1007/s00265-013-1597-3.
Article
Google Scholar
Kim S-Y, Fargallo JA, Vergara O, Martínez-Padilla J: Multivariate heredity of melanin-based coloration, body mass and immunity. Heredity. 2013, 111: 139-146. 10.1038/hdy.2013.29.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thompson CF, Sakaluk SK, Masters BS, Johnson BPG, Vogel LA, Forsman AM, Johnson LS: Condition-dependent sex difference in nestling house wren (Troglodytes aedon) response to phytohaemagglutinin injection. Can J Zool. 2014, 92: 1-7. 10.1139/cjz-2013-0140.
Article
CAS
Google Scholar
Grindstaff JL, Hasselquist D, Nilsson J-Å, Sandell M, Smith HG, Stjerman M: Transgenerational priming of immunity: maternal exposure to a bacterial antigen enhances offspring humoral immunity. Proc R Soc B. 2006, 273: 2551-2557. 10.1098/rspb.2006.3608.
Article
PubMed
CAS
PubMed Central
Google Scholar
Merino S, Potti J: Growth, nutrition, and blow fly parasitism in nestling pied flycatchers. Can J Zool. 1998, 76: 936-941. 10.1139/z98-013.
Article
Google Scholar
Rehder NB, Bird DM: Annual profiles of blood packed cell volumes of captive American kestrels. Can J Zool. 1983, 61: 2550-2555. 10.1139/z83-337.
Article
Google Scholar
Richner H, Oppliger A, Christe P: Effect of an ectoparasite on reproduction in great tits. J Anim Ecol. 1993, 62: 703-710. 10.2307/5390.
Article
Google Scholar
Santangeli A, Hakkarainen H, Laaksonen T, Korpimäki E: Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim Behav. 2012, 83: 1115-1123. 10.1016/j.anbehav.2012.02.002.
Article
Google Scholar
Kruuk LEB, Hadfield JD: How to separate genetic and environmental causes of similarity between relatives. J Evol Biol. 2007, 20: 1890-1903. 10.1111/j.1420-9101.2007.01377.x.
Article
PubMed
CAS
Google Scholar
Schuler B, Arras M, Keller S, Rettich A, Lundby C, Vogel J, Gassmann M: Optimal hematocrit for maximal exercise performance in acute and chronic erythropoietin-treated mice. Proc Natl Acad Sci U S A. 2010, 107: 419-423. 10.1073/pnas.0912924107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kruuk LEB, Merilä J, Sheldon BC: Phenotypic selection on a heritable size trait revisited. Am Nat. 2001, 158: 557-581. 10.1086/323585.
Article
PubMed
CAS
Google Scholar
Sakaluk SK, Wilson AJ, Bowers EK, Johnson LS, Masters BS, Johnson BG, Vogel LA, Forsman AM, Thompson CF: Data from: Genetic and environmental variation in condition, cutaneous immunity, and haematocrit in house wrens. Dryad. doi:10.5061/dryad.jk2m0.