Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR: A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol. 2013, 66: 479-506. 10.1016/j.ympev.2012.10.012.
Article
PubMed
Google Scholar
Zhou X, Xu S, Yang Y, Zhou K, Yang G: Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol. 2011, 61: 255-264. 10.1016/j.ympev.2011.02.009.
Article
PubMed
Google Scholar
Fordyce RE: Origins and evolution of Antarctic marine mammals. Geol Soc London Spec Publ. 1989, 47: 269-281. 10.1144/GSL.SP.1989.047.01.20.
Article
Google Scholar
Thewissen J, Cooper LN, George JC, Bajpai S: From land to water: the origin of whales, dolphins, and porpoises. Evo Edu Outreach. 2009, 2: 272-288. 10.1007/s12052-009-0135-2.
Article
Google Scholar
Uhen MD: The origin (s) of whales. Annu Rev Earth Pl Sc. 2010, 38: 189-219. 10.1146/annurev-earth-040809-152453.
Article
CAS
Google Scholar
Liu Y, Cotton JA, Shen B, Han X, Rossiter SJ, Zhang S: Convergent sequence evolution between echolocating bats and dolphins. Curr Biol. 2010, 20: R53-R54. 10.1016/j.cub.2009.11.058.
Article
PubMed
CAS
Google Scholar
Liu Y, Rossiter SJ, Han X, Cotton JA, Zhang S: Cetaceans on a molecular fast track to ultrasonic hearing. Curr Biol. 2010, 20: 1834-1839. 10.1016/j.cub.2010.09.008.
Article
PubMed
CAS
Google Scholar
Davies K, Cotton JA, Kirwan JD, Teeling EC, Rossiter SJ: Parallel signatures of sequence evolution among hearing genes in echolocating mammals: an emerging model of genetic convergence. Heredity. 2012, 108: 480-489. 10.1038/hdy.2011.119.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kishida T, Kubota S, Shirayama Y, Fukami H: The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett. 2007, 3: 428-430. 10.1098/rsbl.2007.0191.
Article
PubMed
CAS
PubMed Central
Google Scholar
McGowen MR, Clark C, Gatesy J: The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconciliation and supermatrix methods. Syst Biol. 2008, 57: 574-590. 10.1080/10635150802304787.
Article
PubMed
CAS
Google Scholar
Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC: Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res. 2010, 20: 1-9. 10.1101/gr.099416.109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhou X, Sun F, Xu S, Fan G, Zhu K, Liu X, Chen Y, Shi C, Yang Y, Huang Z, Chen J, Hou H, Guo X, Chen W, Chen Y, Wang X, Lv T, Yang D, Zhou J, Huang B, Wang Z, Zhao W, Tian R, Xiong Z, Xu J, Liang X, Chen B, Liu W, Wang J, Pan S, et al: Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nat Commun. 2013, 4: 2708-
PubMed
PubMed Central
Google Scholar
Kinnamon SC, Cummings TA: Chemosensory Transduction Mechanisms in Taste. Annu Rev Physiol. 1992, 54: 715-731. 10.1146/annurev.ph.54.030192.003435.
Article
PubMed
CAS
Google Scholar
Lindemann B: Taste reception. Physiol Rev. 1996, 76: 719-766.
CAS
Google Scholar
Heck GL, Mierson S, DeSimone JA: Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984, 223: 403-405. 10.1126/science.6691151.
Article
PubMed
CAS
Google Scholar
Hettinger TP, Frank ME: Specificity of amiloride inhibition of hamster taste responses. Brain Res. 1990, 513: 24-34. 10.1016/0006-8993(90)91085-U.
Article
PubMed
CAS
Google Scholar
Yoshida R, Horio N, Murata Y, Yasumatsu K, Shigemura N, Ninomiya Y: NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience. 2009, 159: 795-803. 10.1016/j.neuroscience.2008.12.052.
Article
PubMed
CAS
Google Scholar
Eylam S, Spector AC: Taste discrimination between NaCl and KCl is disrupted by amiloride in inbred mice with amiloride-insensitive chorda tympani nerves. Am J Physiol Regul Integr Comp Physiol. 2005, 288: R1361-R1368. 10.1152/ajpregu.00796.2004.
Article
PubMed
CAS
Google Scholar
Garcia J, Hankins WG: The evolution of bitter and the acquisition of toxiphobia. Olfaction Taste. 1975, 5: 39-45.
Google Scholar
Glendinning JI: Is the bitter rejection response always adaptive?. Physiol Behav. 1994, 56: 1217-1227. 10.1016/0031-9384(94)90369-7.
Article
PubMed
CAS
Google Scholar
Ganchrow JR, Steiner JE, Daher M: Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behav Dev. 1983, 6: 473-484. 10.1016/S0163-6383(83)90301-6.
Article
Google Scholar
Bachmanov AA, Beauchamp GK: Taste receptor genes. Annu Rev Nutr. 2006, 27: 389-414. 10.1146/annurev.nutr.26.061505.111329.
Article
Google Scholar
Bachmanov AA, Li X, Reed DR, Ohmen JD, Li S, Chen Z, Tordoff MG, de Jong PJ, Wu C, West DB: Positional cloning of the mouse saccharin preference (Sac) locus. Chem Senses. 2001, 26: 925-933. 10.1093/chemse/26.7.925.
Article
PubMed
CAS
PubMed Central
Google Scholar
Max M, Shanker YG, Huang L, Rong M, Liu Z, Campagne F, Weinstein H, Damak S, Margolskee RF: Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet. 2001, 28: 58-63.
PubMed
CAS
Google Scholar
Montmayeur J, Liberles SD, Matsunami H, Buck LB: A candidate taste receptor gene near a sweet taste locus. Nat Neurosci. 2001, 4: 492-498.
PubMed
CAS
Google Scholar
Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS: Mammalian sweet taste receptors. Cell. 2001, 106: 381-390. 10.1016/S0092-8674(01)00451-2.
Article
PubMed
CAS
Google Scholar
Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS: An amino-acid taste receptor. Nature. 2002, 416: 199-202. 10.1038/nature726.
Article
PubMed
CAS
Google Scholar
Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS: A novel family of mammalian taste receptors. Cell. 2000, 100: 693-702. 10.1016/S0092-8674(00)80705-9.
Article
PubMed
CAS
Google Scholar
Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ: T2Rs function as bitter taste receptors. Cell. 2000, 100: 703-711. 10.1016/S0092-8674(00)80706-0.
Article
PubMed
CAS
Google Scholar
Matsunami H, Montmayeur J, Buck LB: A family of candidate taste receptors in human and mouse. Nature. 2000, 404: 601-604. 10.1038/35007072.
Article
PubMed
CAS
Google Scholar
Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG, Margolskee RF, Reed DR, Beauchamp GK: Major taste loss in carnivorous mammals. Proc Natl Acad Sci USA. 2012, 109: 4956-4961. 10.1073/pnas.1118360109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K, Yamamoto T, Tohyama M, Shimada S: Receptor that leaves a sour taste in the mouth. Nature. 1998, 395: 555-556. 10.1038/26882.
Article
PubMed
CAS
Google Scholar
Stevens DR, Seifert R, Bufe B, M Ller F, Kremmer E, Gauss R, Meyerhof W, Kaupp UB, Lindemann B: Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature. 2001, 413: 631-635. 10.1038/35098087.
Article
PubMed
CAS
Google Scholar
Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD: Acid-Sensitive Two-Pore Domain Potassium (K ~ 2P) Channels in Mouse Taste Buds. J Neurophysiol. 2004, 92: 1928-10.1152/jn.00273.2004.
Article
PubMed
CAS
Google Scholar
LopezJimenez ND, Cavenagh MM, Sainz E, Cruz Ithier MA, Battey JF, Sullivan SL: Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem. 2006, 98: 68-77. 10.1111/j.1471-4159.2006.03842.x.
Article
PubMed
CAS
Google Scholar
Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H: Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci USA. 2006, 103: 12569-12574. 10.1073/pnas.0602702103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS: The cells and logic for mammalian sour taste detection. Nature. 2006, 442: 934-938. 10.1038/nature05084.
Article
PubMed
CAS
PubMed Central
Google Scholar
Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y, Matsunami H, Ninomiya Y: Sour taste responses in mice lacking PKD channels. PLoS One. 2011, 6: e20007-10.1371/journal.pone.0020007.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huque T, Cowart BJ, Dankulich-Nagrudny L, Pribitkin EA, Bayley DL, Spielman AI, Feldman RS, Mackler SA, Brand JG: Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One. 2009, 4: e7347-10.1371/journal.pone.0007347.
Article
PubMed
PubMed Central
Google Scholar
Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS: The cells and peripheral representation of sodium taste in mice. Nature. 2010, 464: 297-301. 10.1038/nature08783.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hummler E, Beermann F: Scnn1 sodium channel gene family in genetically engineered mice. J Am Soc Nephrol. 2000, 11 (suppl 2): S129-S134.
PubMed
CAS
Google Scholar
Shi P, Zhang J: Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol. 2006, 23: 292-300. 10.1093/molbev/msj028.
Article
PubMed
CAS
Google Scholar
Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FC, Zhou Y, Cao J, Sun X, Fu Y, et al: The sequence and de novo assembly of the giant panda genome. Nature. 2009, 463: 311-317. 10.1038/nature08696.
Article
PubMed
PubMed Central
Google Scholar
Zhao H, Yang J, Xu H, Zhang J: Pseudogenization of the umami taste receptor gene Tas1r1 in the giant panda coincided with its dietary switch to bamboo. Mol Biol Evol. 2010, 27: 2669-2673. 10.1093/molbev/msq153.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao H, Zhou Y, Pinto CM, Charles-Dominique P, Galindo-Gonz Lez J, Zhang S, Zhang J: Evolution of the sweet taste receptor gene Tas1r2 in bats. Mol Biol Evol. 2010, 27: 2642-2650. 10.1093/molbev/msq152.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao H, Xu D, Zhang S, Zhang J: Genomic and genetic evidence for the loss of umami taste in bats. Genome Biol Evol. 2012, 4: 73-79. 10.1093/gbe/evr126.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li D, Zhang J: Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire. Mol Biol Evol. 2014, 31: 303-309. 10.1093/molbev/mst219.
Article
PubMed
CAS
PubMed Central
Google Scholar
Meyerhof W: Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol. 2005, 154: 37-72.
Article
PubMed
CAS
Google Scholar
Gonz Lez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF: Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Aca Sci USA. 2001, 98: 1182-1187. 10.1073/pnas.98.3.1182.
Article
Google Scholar
Nummela S, Hussain ST, Thewissen J: Cranial anatomy of Pakicetidae (Cetacea, Mammalia). J Vertebr Paleontol. 2006, 26: 746-759. 10.1671/0272-4634(2006)26[746:CAOPCM]2.0.CO;2.
Article
Google Scholar
O'Leary MA, Uhen MD: The time of origin of whales and the role of behavioral changes in the terrestrial-aquatic transition. Paleobiology. 1999, 25: 534-556.
Google Scholar
Miller D: Seals and Sea Lions. 1998, Voyageur Press, Stillwater
Google Scholar
Werth AJ: Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec. 2007, 290: 546-568. 10.1002/ar.20538.
Article
Google Scholar
Yoshimura K, Shindoh J, Kobayashi K: Scanning electron microscopy study of the tongue and lingual papillae of the California sea lion (Zalophus californianus californianus). Anat Rec. 2002, 267: 146-153. 10.1002/ar.10093.
Article
PubMed
Google Scholar
Yoshimura K, Kobayashi K: A comparative morphological study on the tongue and the lingual papillae of some marine mammals-Particularly of four species of odontoceti and zalophus. Shigaku= Odontology. 1997, 85: 385-407. 10.1007/BF03039036.
Article
Google Scholar
Li Y: The tongue of Baiji, Lipotes vexillifer. Acta Zool Sin. 1983, 29: 35-41. (In Chinese with English abstract),
Google Scholar
Rozengurt E: Taste receptors in the gastrointestinal tract. I. Bitter taste receptors and α-gustducin in the mammalian gut. Am J Physiol-Gastr L. 2006, 291: G171-G177.
CAS
Google Scholar
Bezençon C, le Coutre J, Damak S: Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem Senses. 2007, 32: 41-49. 10.1093/chemse/bjl034.
Article
PubMed
Google Scholar
Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP: T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA. 2007, 104: 15075-15080. 10.1073/pnas.0706678104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rozengurt E, Sternini C: Taste receptor signaling in the mammalian gut. Curr Opin Pharmacol. 2007, 7: 557-562. 10.1016/j.coph.2007.10.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Finger TE, Böttger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL: Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA. 2003, 100: 8981-8986. 10.1073/pnas.1531172100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ: Motile cilia of human airway epithelia are chemosensory. Science. 2009, 325: 1131-1134. 10.1126/science.1173869.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB: Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010, 16: 1299-1304. 10.1038/nm.2237.
Article
PubMed
CAS
PubMed Central
Google Scholar
Oya M, Suzuki H, Watanabe Y, Sato M, Tsuboi T: Amino acid taste receptor regulates insulin secretion in pancreatic β-3cell line MIN6 cells. Genes Cells. 2011, 16: 608-616. 10.1111/j.1365-2443.2011.01509.x.
Article
PubMed
CAS
Google Scholar
Ren X, Zhou L, Terwilliger R, Newton SS, De Araujo IE: Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr Neurosci. 2009, 3: 12-10.3389/neuro.07.012.2009.
Article
PubMed
PubMed Central
Google Scholar
Singh N, Vrontakis M, Parkinson F, Chelikani P: Functional bitter taste receptors are expressed in brain cells. Biochem Bioph Res Co. 2011, 406: 146-151. 10.1016/j.bbrc.2011.02.016.
Article
CAS
Google Scholar
Chaudhari N, Landin AM, Roper SD: A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci. 2000, 3: 113-119. 10.1038/72053.
Article
PubMed
CAS
Google Scholar
San Gabriel A, Uneyama H, Yoshie S, Torii K: Cloning and characterization of a novel mGluR1 variant from vallate papillae that functions as a receptor for L-glutamate stimuli. Chem Senses. 2005, 30 (suppl 1): i25-i26. 10.1093/chemse/bjh095.
Article
PubMed
CAS
Google Scholar
Toyono T, Seta Y, Kataoka S, Kawano S, Shigemoto R, Toyoshima K: Expression of metabotropic glutamate receptor group I in rat gustatory papillae. Cell Tissue Res. 2003, 313: 29-35. 10.1007/s00441-003-0740-2.
Article
PubMed
CAS
Google Scholar
Conigrave AD, Brown EM: Taste Receptors in the Gastrointestinal Tract II. l-Amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol-Gastr L. 2006, 291: G753-G761.
CAS
Google Scholar
Brand JG, Teeter JH, Silver WL: Inhibition by amiloride of chorda tympani responses evoked by monovalent salts. Brain Res. 1985, 334: 207-214. 10.1016/0006-8993(85)90212-4.
Article
PubMed
CAS
Google Scholar
Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger J, Rossier BC: Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994, 367: 463-467. 10.1038/367463a0.
Article
PubMed
CAS
Google Scholar
Collier DM, Snyder PM: Extracellular chloride regulates the epithelial sodium channel. J Biol Chem. 2009, 284: 29320-29325. 10.1074/jbc.M109.046771.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kellenberger S, Schild L: Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002, 82: 735-767.
Article
PubMed
CAS
Google Scholar
Adams CM, Snyder PM, Welsh MJ: Interactions between subunits of the human epithelial sodium channel. J Biol Chem. 1997, 272: 27295-27300. 10.1074/jbc.272.43.27295.
Article
PubMed
CAS
Google Scholar
Firsov D, Robert-Nicoud M, Gruender S, Schild L, Rossier BC: Mutational analysis of cysteine-rich domains of the epithelium sodium channel (ENaC). Identification of cysteines essential for channel expression at the cell surface. J Biol Chem. 1999, 274: 2743-2749. 10.1074/jbc.274.5.2743.
Article
PubMed
CAS
Google Scholar
Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D: WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J. 1996, 15: 2371-
PubMed
CAS
PubMed Central
Google Scholar
Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger J, Rotin D, Staub O: Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest. 1999, 103: 667-673. 10.1172/JCI5713.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24: 1586-1591. 10.1093/molbev/msm088.
Article
PubMed
CAS
Google Scholar
Weadick CJ, Chang BS: An improved likelihood ratio test for detecting site-specific functional divergence among clades of protein-coding genes. Mol Biol Evol. 2012, 29: 1297-1300. 10.1093/molbev/msr311.
Article
PubMed
CAS
Google Scholar
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, Scheffler K: FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013, 30: 1196-1205. 10.1093/molbev/mst030.
Article
PubMed
CAS
PubMed Central
Google Scholar
Woolley S, Johnson J, Smith MJ, Crandall KA, McClellan DA: TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics. 2003, 19: 671-672. 10.1093/bioinformatics/btg043.
Article
PubMed
CAS
Google Scholar
Garty H, Palmer LG: Epithelial sodium channels: function, structure, and regulation. Physiol Rev. 1997, 77: 359-396.
PubMed
CAS
Google Scholar
Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC: Early death due to defective neonatal lung liquid clearance in αENaC-deficient mice. Nat Genet. 1996, 12: 325-328. 10.1038/ng0396-325.
Article
PubMed
CAS
Google Scholar
Chang SS, Grunder S, Hanukoglu A, R sler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C: Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996, 12: 248-253. 10.1038/ng0396-248.
Article
PubMed
CAS
Google Scholar
Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP: Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995, 11: 76-82. 10.1038/ng0995-76.
Article
PubMed
CAS
Google Scholar
Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson-Williams C, Rossier BC, Lifton RP: A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci USA. 1995, 92: 11495-11499. 10.1073/pnas.92.25.11495.
Article
PubMed
CAS
PubMed Central
Google Scholar
Medway W, Geraci JR: Blood chemistry of the bottlenose dolphin (Tursiops truncatus). APS--Legacy Content. 1965, 209: 169-172.
CAS
Google Scholar
Koopman HN, Westgate AJ, Read AJ, Gaskin DE: Blood chemistry of wild harbor porpoises Phocoena phocoena (L.). Mar Mammal Sci. 1995, 11: 123-135. 10.1111/j.1748-7692.1995.tb00512.x.
Article
Google Scholar
Ortiz RM: Osmoregulation in marine mammals. J Exp Biol. 2001, 204: 1831-1844.
PubMed
CAS
Google Scholar
Kjeld M: Salt and water balance of modern baleen whales: rate of urine production and food intake. Can J Zoo. 2003, 81: 606-616. 10.1139/z03-041.
Article
Google Scholar
Birukawa N, Ando H, Goto M, Kanda N, Pastene LA, Nakatsuji H, Hata H, Urano A: Plasma and urine levels of electrolytes, urea and steroid hormones involved in osmoregulation of cetaceans. Zool Sci. 2005, 22: 1245-1257. 10.2108/zsj.22.1245.
Article
PubMed
CAS
Google Scholar
Hoelzel AR: Molecular Genetic Analysis of Populations: A Practical Approach. 1992, IRL Press, Oxford
Google Scholar
Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22: 4673-4680. 10.1093/nar/22.22.4673.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nikaido M, Rooney AP, Okada N: Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA. 1999, 96: 10261-10266. 10.1073/pnas.96.18.10261.
Article
PubMed
CAS
PubMed Central
Google Scholar
Agnarsson I, May-Collado LJ: The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol. 2008, 48: 964-985. 10.1016/j.ympev.2008.05.046.
Article
PubMed
CAS
Google Scholar
Xiong Y, Brandley MC, Xu S, Zhou K, Yang G: Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evol Biol. 2009, 9: 20-10.1186/1471-2148-9-20.
Article
PubMed
PubMed Central
Google Scholar
Zhu K-L, Zhou X-M, Xu S-X, Sun D, Zhou K-Y, Yang G: Data from The loss of taste genes in cetaceans.Dryad Digital Repos 2014, [http://dx.doi.org/10.5061/dryad.7qp63]