Butlin R: Opinion – evolution of sex: The costs and benefits of sex: new insights from old asexual lineages. Nat Rev Genet. 2002, 3: 311-317.
CAS
PubMed
Google Scholar
Martens K, Schon I: Parasites, predators and the Red Queen. Trends Ecol Evol. 2000, 15: 392-393.
PubMed
Google Scholar
Maynard Smith J: The evolution of sex. 1978, New York: Cambridge University Press
Google Scholar
Judson OP, Normark BB: Ancient asexual scandals. Trends Ecol Evol. 1996, 11: 41-46.
CAS
PubMed
Google Scholar
West SA, Lively CM, Read AF: A pluralist approach to sex and recombination. J Evol Biol. 1999, 12: 1003-1012.
Google Scholar
Howard RS, Lively CM: Parasitism, mutation accumulation and the maintenance of sex. Nature. 1994, 367: 554-557.
CAS
PubMed
Google Scholar
Loewe L: Quantifying the genomic decay paradox due to Muller's ratchet in human mitochondrial DNA. Genet Res. 2006, 87: 133-159.
CAS
PubMed
Google Scholar
Kondrashov AS: Classification of hypotheses on the advantage of amphimixis. J Hered. 1993, 84: 372-387.
CAS
PubMed
Google Scholar
Stephan W, Kim Y: Recent applications of diffusion theory to population genetics. Modern developments in theoretical population genetics. Edited by: Slatkin M, Veuille M. 2002, Oxford: Oxford University Press, 72-93.
Google Scholar
Hubbs CL, Hubbs LC: Apparent parthogenesis in nature, in a form of fish of hybrid origin. Science. 1932, 76: 728-630.
Google Scholar
Schartl M, Wilde B, Schlupp I, Parzefall J: Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution. 1995, 49: 827-835.
CAS
Google Scholar
Möller D: Aspekte zur Populationsgenetik des eingeschlechtlichen Amazonenkärpflings Poecilia formosa (GIRARD 1859) unter Berücksichtigung der genetischen parentalen Arten, dem Breitflossenkärpfling Poecilia latipinna (LESUEUR 1821) und dem Atlantikkärpfling Poecilia mexicana (STEINDACHNER 1863). 2001, Hamburg, Germany: University of Hamburg
Google Scholar
Schartl M, Nanda I, Schlupp I, Wilde B, Epplen JT, Schmid M, Parzefall J: Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature. 1995, 373: 68-71.
Google Scholar
Schlupp I, Parzefall J, Schartl M: Biogeography of the Amazon molly, Poecilia formosa. J Biogeogr. 2002, 29: 1-6.
Google Scholar
Lampert KP, Lamatsch DK, Epplen JT, Schartl M: Evidence for a monophyletic origin of triploid clones of the Amazon molly, Poecilia formosa. Evolution. 2005, 59: 881-889.
CAS
PubMed
Google Scholar
Maruyama T: On fixation probability of mutant genes in a subdivided population. Genet Res. 1970, 15: 221-225.
CAS
PubMed
Google Scholar
Maruyama T: Simple proof that certain quantities are independent of geographical structure of population. Theor Popul Biol. 1974, 5: 148-154.
CAS
PubMed
Google Scholar
Whitlock MC, Barton NH: The effective size of a subdivided population. Genetics. 1997, 146: 427-441.
PubMed Central
CAS
PubMed
Google Scholar
Whitlock MC: Fixation probability and time in subdivided populations. Genetics. 2003, 164: 767-779.
PubMed Central
PubMed
Google Scholar
Hubbs CL: Interactions between bisexual fish species and its gynogenetic sexual parasite. Bull Tex Mem Mus. 1964, 8: 1-72.
Google Scholar
Schlupp I: Dispensable and indispensable genes in an ameiotic fish, the Amazon molly Poecilia formosa. Cytogenet Cell Genet. 1998, 80: 193-198.
CAS
PubMed
Google Scholar
Stöck M, Lamatsch DK: Triploide Wirbeltiere: Wege aus der Unfruchtbarkeit oder Eingeschlechtigkeit. Naturw Rdsch. 2002, 55: 349-358.
Google Scholar
Schories S, Lampert KP, Lamatsch DK, de Leon FJ, Schartl M: Analysis of a possible independent origin of triploid P. formosa outside of the Río Purificación river system. Front Zool. 2007, 4: 13-
PubMed Central
PubMed
Google Scholar
Lamatsch DK, Nanda I, Schlupp I, Epplen JT, Schmid M, Schartl M: Distribution and stability of supernumerary microchromosomes in natural populations of the Amazon molly, Poecilia formosa. Cytogenet Genome Res. 2004, 106: 189-194.
CAS
PubMed
Google Scholar
Nanda I, Schlupp I, Lamatsch D, Lampert K, Schmid M, Schartl M: Stable inheritance of host species-derived microchromosomes in the gynogenetic fish Poecilia formosa. Genetics. 2007, 177: 917-926.
PubMed Central
PubMed
Google Scholar
Rasch EM, Monaco PJ, Balsano JS: Cytophotometric and autoradiographic evidence for functional apomixis in a gynogenetic fish, Poecilia formosa and its related, triploid unisexuals. Histochemistry. 1982, 73: 515-533.
CAS
PubMed
Google Scholar
Gessler DDG: The constraints of finite size in asexual populations and the rate of the ratchet. Genet Res. 1995, 66: 241-253.
CAS
PubMed
Google Scholar
Stephan W, Chao L, Smale JG: The advance of Muller's ratchet in a haploid asexual population: Approximate solutions based on diffusion theory. Genet Res. 1993, 61: 225-231.
CAS
PubMed
Google Scholar
Loewe L: evolution@home: Experiences with work units that span more than 7 orders of magnitude in computational complexity. Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2002). Edited by: Bal HE, Löhr K-P, Reinefeld A. 2002, Berlin, Germany: IEEE Computer Society, 425-431. [http://archive.evolution.ws/pdf/loewe-l/Loewe2002-EaHworkunits.pdf]
Google Scholar
Loewe L: Evolution@home: observations on participant choice, work unit variation and low-effort global computing. Softw Pract Exper. 2007, 37: 1289-1318.
Google Scholar
Loewe L: The evolution@home website. 2008, [http://evolutionary-research.net]
Google Scholar
Sola L, Galetti PM, Monaco PJ, Rasch EM: Cytogenetics of bisexual/unisexual species of Poecilia. 6. Additional nucleolus organizer region chromosomal clones of Poecilia formosa (Amazon molly) from Texas, with a survey of chromosomal clones detected in the Amazon molly. Heredity. 1997, 78: 612-619.
Google Scholar
Stern C: Somatic crossing over and segregation in Drosophila melanogaster. Genetics. 1936, 21: 625-730.
PubMed Central
CAS
PubMed
Google Scholar
Ashburner M: Drosophila: A laboratory handbook. 1989, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory
Google Scholar
Prado F, Cortes-Ledesma F, Huertas P, Aguilera A: Mitotic recombination in Saccharomyces cerevisiae. Curr Genet. 2003, 42: 185-198.
CAS
PubMed
Google Scholar
Aguilera A, Chavez S, Malagon F: Mitotic recombination in yeast: elements controlling its incidence. Yeast. 2000, 16: 731-754.
CAS
PubMed
Google Scholar
Barbera MA, Petes TD: Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2006, 103: 12819-12824.
PubMed Central
CAS
PubMed
Google Scholar
Shao C, Stambrook PJ, Tischfield JA: Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nat Genet. 2001, 28: 169-172.
CAS
PubMed
Google Scholar
Holt D, Dreimanis M, Pfeiffer M, Firgaira F, Morley A, Turner D: Interindividual variation in mitotic recombination. Am J Hum Genet. 1999, 65: 1423-1427.
PubMed Central
CAS
PubMed
Google Scholar
Omilian AR, Cristescu ME, Dudycha JL, Lynch M: Ameiotic recombination in asexual lineages of Daphnia. Proc Natl Acad Sci USA. 2006, 103: 18638-18643.
PubMed Central
CAS
PubMed
Google Scholar
Holliday R: Recombination and meiosis. Philos Trans R Soc Lond B Biol Sci. 1977, 277: 359-370.
CAS
PubMed
Google Scholar
Helleday T: Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 2003, 532: 103-115.
CAS
PubMed
Google Scholar
Antezana MA, Hudson RR: Before crossing over: The advantages of eukaryotic sex in genomes lacking chiasmatic recombination. Genet Res. 1997, 70: 7-25.
CAS
PubMed
Google Scholar
Charlesworth D, Morgan MT, Charlesworth B: Mutation accumulation in finite outbreeding and inbreeding populations. Genet Res. 1993, 61: 39-56.
Google Scholar
Heller R, Maynard Smith J: Does Muller's ratchet work with selfing?. Genet Res. 1978, 32: 289-293.
Google Scholar
Loewe L, Charlesworth B: Inferring the distribution of mutational effects on fitness in Drosophila. Biol Lett. 2006, 2: 426-430.
PubMed Central
PubMed
Google Scholar
Eyre-Walker A, Keightley PD: The distribution of fitness effects of new mutations. Nat Rev Genet. 2007, 8: 610-618.
CAS
PubMed
Google Scholar
Beukeboom LW, Vrijenhoek RC: Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J Evol Biol. 1998, 11: 755-782.
Google Scholar
Lamatsch DK, Schmid M, Schartl M: A somatic mosaic of the gynogenetic Amazon molly. J Fish Biol. 2002, 60: 1417-1422.
Google Scholar
Monaco PJ, Rasch EM, Balsano JS, Turner BJ: Muscle protein phenotypes and the probable evolutionary origin of a unisexual fish, Poecilia formosa, and its triploid derivatives. J Exp Zool. 1982, 221: 265-274.
CAS
Google Scholar
Monaco P, Rasch E, Balsano J: Apomictic reproduction in the Amazon molly, Poecilia formosa and its triploid hybrids. Evolutionary Genetics of Fishes. Edited by: Turner BJ. 1984, New York: Plenum Press, 311-318.
Google Scholar
Beukeboom LW, van Batenburg FHD: The effect of paternal leakage on the rate of Muller's ratchet. 7th Conference of the European Society for Evolutionary Biology: 1999; Barcelona, Spain. 1999, handout for poster.
Google Scholar
Beukeboom LW, Weinzierl RP, Michiels NK: Amazon molly and Muller's ratchet. Nature. 1995, 375: 111-112.
CAS
Google Scholar
Crow JF: The high spontaneous mutation rate: Is it a health risk?. Proc Natl Acad Sci USA. 1997, 94: 8380-8386.
PubMed Central
CAS
PubMed
Google Scholar
Kondrashov AS: Muller's Ratchet under epistatic selection. Genetics. 1994, 136: 1469-1473.
PubMed Central
CAS
PubMed
Google Scholar
Butcher D: Muller's ratchet, epistasis and mutation effects. Genetics. 1995, 141: 431-437.
PubMed Central
CAS
PubMed
Google Scholar
Poon A, Otto SP: Compensating for our load of mutations: Freezing the meltdown of small populations. Evolution. 2000, 54: 1467-1479.
CAS
PubMed
Google Scholar
Bachtrog D, Gordo I: Adaptive evolution of asexual populations under Muller's ratchet. Evolution. 2004, 58: 1403-1413.
PubMed
Google Scholar
Schultz ST, Lynch M: Mutation and extinction: The role of variable mutational effects, synergistic epistasis, beneficial mutations, and the degree of outcrossing. Evolution. 1997, 51: 1363-1371.
Google Scholar
Eyre-Walker A: The genomic rate of adaptive evolution. Trends Ecol Evol. 2006, 21: 569-575.
PubMed
Google Scholar
Silander OK, Tenaillon O, Chao L: Understanding the evolutionary fate of finite populations: the dynamics of mutational effects. PLoS Biol. 2007, 5: e94-
PubMed Central
PubMed
Google Scholar
Plath M: Cave molly females (Poecilia mexicana) avoid parasitised males. Acta Ethol. 2004, 6: 47-51.
Google Scholar
Tobler M, Plath M, Burmeister H, Schlupp I: Black spots and female association preferences in a sexual/asexual mating complex (Poecilia, Poeciliidae, Teleostei). Behav Ecol Sociobiol. 2006, 60: 159-165.
Google Scholar
Jaenike J: An hypothesis to account for the maintenance of sex within populations. Evolutionary Theory. 1978, 3: 191-194.
Google Scholar
Sasaki A, Hamilton WD, Ubeda F: Clone mixtures and a pacemaker: new facets of Red-Queen theory and ecology. Proceedings of the Royal Society of London Series B-Biological Sciences. 2002, 269: 761-772.
CAS
Google Scholar
Meirmans S, Neiman M: Methodologies for testing a pluralist idea for the maintenance of sex. Biol J Linn Soc. 2006, 89: 605-613.
Google Scholar
Lively CM, Craddock C, Vrijenhoek RC: Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature. 1990, 344: 864-866.
Google Scholar
Tobler M, Schlupp I: Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): a case for the Red Queen?. Biol Lett. 2005, 1: 166-168.
PubMed Central
PubMed
Google Scholar
Dries LA: The evolutionary persistence of the gynogenetic Amazon molly, Poecilia formosa. 2000, Austin, Texas: University of Texas
Google Scholar
Dries LA: Peering through the looking glass at a sexual parasite: Are Amazon mollies red queens?. Evolution. 2003, 57: 1387-1396.
PubMed
Google Scholar
Lampert KP, Lamatsch DK, Fischer P, Epplen JT, Nanda I, Schmid M, Schartl M: Automictic reproduction in interspecific hybrids of poeciliid fish. Curr Biol. 2007, 17: 1948-1953.
CAS
PubMed
Google Scholar
Schlupp I: The evolutionary ecology of gynogenesis. Annual Review of Ecology Evolution and Systematics. 2005, 36: 399-417.
Google Scholar
Vrijenhoek RC: Unisexual Fish – Model Systems for Studying Ecology and Evolution. Annu Rev Ecol Syst. 1994, 25: 71-96.
Google Scholar
Vrijenhhoek RC: The origin and evolution of clones versus the maintenance of sex in Poeciliopsis. J Hered. 1993, 84: 388-395.
Google Scholar
Schoen DJ, Brownstein JS, White PA: Mutation load in natural populations of the sensitive fern Onoclea sensibilis exposed to soil mutagens. Ecol Applic. 2002, 12: 124-137.
Google Scholar
Klekowski EJ: Mutational load in a fern population growing in a polluted environment. Am J Bot. 1976, 63: 1024-1030.
Google Scholar
Klekowski EJ, Klekowski E: Mutation in ferns growing in an environment contaminated with polychlorinated-biphenyls. Am J Bot. 1982, 69: 721-727.
CAS
Google Scholar
Majer BJ, Grummt T, Uhl M, Knasmuller S: Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochim Hydrobiol. 2005, 33: 45-55.
CAS
Google Scholar
Bell G: The Masterpiece of Nature: The Evolution and Genetics of Sexuality. 1982, Berkeley: University of California Press
Google Scholar
Martens K, Rossetti G, Horne DJ: How ancient are ancient asexuals?. Proc R Soc Lond B Biol Sci. 2003, 270: 723-729.
Google Scholar
Leslie JF, Vrijenhoek RC: Consideration of Muller's ratchet mechanism through studies of genetic-linkage and genomic compatibilities in clonally reproducing Poeciliopsis. Evolution. 1980, 34: 1105-1115.
Google Scholar
Spolsky CM, Phillips CA, Uzzell T: Antiquity of clonal salamander lineages revealed by mitochondrial DNA. Nature. 1992, 356: 706-708.
CAS
PubMed
Google Scholar
Hedges SB, Bogart JP, Maxson LR: Ancestry of unisexual salamanders. Nature. 1992, 356: 708-710.
CAS
PubMed
Google Scholar
Robertson AV, Ramsden C, Niedzwiecki J, Fu J, Bogart JP: An unexpected recent ancestor of unisexual Ambystoma. Mol Ecol. 2006, 15: 3339-3351.
CAS
PubMed
Google Scholar
Guex GD, Hotz H, Semlitsch RD: Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution. 2002, 56: 1036-1044.
PubMed
Google Scholar
Som C, Bagheri HC, Reyer HU: Mutation accumulation and fitness effects in hybridogenetic populations: a comparison to sexual and asexual systems. BMC Evol Biol. 2007, 7: 80-
PubMed Central
PubMed
Google Scholar
Som C, Reyer HU: Hemiclonal reproduction slows down the speed of Muller's ratchet in the hybridogenetic frog Rana esculenta. J Evol Biol. 2007, 20: 650-660.
CAS
PubMed
Google Scholar
Vorburger C: Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution. 2001, 55: 2319-2332.
CAS
PubMed
Google Scholar
Klekowski EJ: Plant clonality, mutation, diplontic selection and mutational meltdown. Biol J Linn Soc. 2003, 79: 61-67.
Google Scholar
Smith RJ, Kamiya T, Horne DJ: Living males of the 'ancient asexual' Darwinulidae (Ostracoda: Crustacea). Proc R Soc Biol Sci Ser B. 2006, 273: 1569-1578.
Google Scholar
Martens K: Sex and ostracods: a new synthesis. Sex and parthenogenesis: Evolutionary ecology of reproductive modes in non-marine ostracods. Edited by: Martens K. 1998, Leiden, Netherlands: Backhuys Publishers, 295-321.
Google Scholar
Butlin R, Schön I, Martens K: Asexual reproduction in non-marine ostracods. Heredity. 1998, 81: 473-480.
Google Scholar
Welch DM, Meselson M: Evidence for the evolution of Bdelloid Rotifers without sexual reproduction or genetic exchange. Science. 2000, 288: 1211-1215.
CAS
Google Scholar
Judson OP, Normark BB: Evolutionary genetics. Sinless originals. Science. 2000, 288: 1185-1186.
CAS
PubMed
Google Scholar
Butlin RK: Virgin rotifers. Trends Ecol Evol. 2000, 15: 389-390.
PubMed
Google Scholar
Dolgin ES, Charlesworth B: The fate of transposable elements in asexual populations. Genetics. 2006, 174: 817-827.
PubMed Central
CAS
PubMed
Google Scholar
Arkhipova I, Meselson M: Deleterious transposable elements and the extinction of asexuals. Bioessays. 2005, 27: 76-85.
CAS
PubMed
Google Scholar
Pouchkina-Stantcheva NN, McGee BM, Boschetti C, Tolleter D, Chakrabortee S, Popova AV, Meersman F, Macherel D, Hincha DK, Tunnacliffe A: Functional divergence of former alleles in an ancient asexual invertebrate. Science. 2007, 318: 268-271.
CAS
PubMed
Google Scholar
Meselson M, Welch DM: Evolution. Stable heterozygosity?. Science. 2007, 318: 202-203.
CAS
PubMed
Google Scholar
Maraun M, Heethoff M, Scheu S, Norton RA, Weigmann G, Thomas RH: Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species. Experimental and Applied Acarology. 2003, 29: 265-277.
PubMed
Google Scholar
Maraun M, Heethoff M, Schneider K, Scheu S, Weigmann G, Cianciolo J, Thomas RH, Norton RA: Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages. Experimental and Applied Acarology. 2004, 33: 183-201.
CAS
PubMed
Google Scholar
Heethoff M, Domes K, Laumann M, Maraun M, Norton RA, Scheu S: High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). J Evol Biol. 2007, 20: 392-402.
CAS
PubMed
Google Scholar
Loewe L: How to quantify effects of Muller's ratchet. 2008, [http://evolutionary-research.net/science/mullers-ratchet/]
Google Scholar
Haigh J: The accumulation of deleterious genes in a population – Muller's ratchet. Theor Popul Biol. 1978, 14: 251-267.
CAS
PubMed
Google Scholar
Lynch M, Butcher RBD, Gabriel W: The mutational meltdown in asexual populations. J Hered. 1993, 84: 339-344.
CAS
PubMed
Google Scholar
Charlesworth B, Charlesworth D: Rapid fixation of deleterious alleles can be caused by Muller's ratchet. Genet Res. 1997, 70: 63-73.
CAS
PubMed
Google Scholar
Higgs PG, Woodcock G: The accumulation of mutations in asexual populations and the structure of genealogical trees in the presence of selection. J Math Biol. 1995, 33: 677-702.
Google Scholar
Söderberg RJ, Berg OG: Mutational interference and the progression of Muller's ratchet when mutations have a broad range of effects. Genetics. 2007, 177: 971-986.
PubMed Central
PubMed
Google Scholar
Birky CW, Walsh JB: Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA. 1988, 85: 6414-6418.
PubMed Central
CAS
PubMed
Google Scholar
Eyre-Walker A, Woolfit M, Phelps T: The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics. 2006, 173: 891-900.
PubMed Central
CAS
PubMed
Google Scholar
Piganeau G, Eyre-Walker A: Estimating the distribution of fitness effects from DNA sequence data: Implications for the molecular clock. Proc Natl Acad Sci USA. 2003, 100: 10335-10340.
PubMed Central
CAS
PubMed
Google Scholar
Loewe L, Charlesworth B, Bartolomé C, Nöel V: Estimating selection on non-synonymous mutations. Genetics. 2006, 172: 1079-1092.
PubMed Central
CAS
PubMed
Google Scholar
Charlesworth D, Charlesworth B, Morgan MT: The pattern of neutral molecular variation under the background selection model. Genetics. 1995, 141: 1619-1632.
PubMed Central
CAS
PubMed
Google Scholar
Charlesworth B, Morgan MT, Charlesworth D: The effect of deleterious mutations on neutral molecular variation. Genetics. 1993, 134: 1289-1303.
PubMed Central
CAS
PubMed
Google Scholar
Pollak E: On the theory of partially inbreeding finite populations. I. Partial selfing. Genetics. 1987, 117: 353-360.
PubMed Central
CAS
PubMed
Google Scholar
Nordborg M, Donnelly P: The coalescent process with selfing. Genetics. 1997, 146: 1185-1195.
PubMed Central
CAS
PubMed
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999, 151: 1531-1545.
PubMed Central
CAS
PubMed
Google Scholar
Lynch M, O'Hely M, Walsh B, Force A: The probability of preservation of a newly arisen gene duplicate. Genetics. 2001, 159: 1789-1804.
PubMed Central
CAS
PubMed
Google Scholar
Lynch M, Katju V: The altered evolutionary trajectories of gene duplicates. Trends Genet. 2004, 20: 544-549.
CAS
PubMed
Google Scholar
Lynch M, Force A: The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000, 154: 459-473.
PubMed Central
CAS
PubMed
Google Scholar
Lynch M: The origins of genome architecture. 2007, Sunderland, Mass.: Sinauer Associates
Google Scholar
Greenberg R, Crow JF: A Comparison of the Effect of Lethal and Detrimental Chromosomes from Drosophila Populations. Genetics. 1960, 45: 1153-1168.
PubMed Central
CAS
PubMed
Google Scholar
Gillespie JH: The heterozygous effects of alleles. Population genetics: A concise guide. Edited by: Gillespie JH. 1998, Baltimore, Maryland: John Hopkins University Press, 62-71.
Google Scholar
Simmons MJ, Crow JF: Mutations affecting fitness in Drosophila populations. Annu Rev Genet. 1977, 11: 49-78.
CAS
PubMed
Google Scholar
Higgins K, Lynch M: Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci USA. 2001, 98: 2928-2933.
PubMed Central
CAS
PubMed
Google Scholar
Johnston MO, Schoen DJ: Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science. 1995, 267: 226-229.
CAS
PubMed
Google Scholar
Willis JH: Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics. 1999, 153: 1885-1898.
PubMed Central
CAS
PubMed
Google Scholar
Charlesworth B, Hughes KA: The maintenance of genetic variation in life-history traits. Evolutionary genetics: from molecules to morphology. Edited by: Singh RS, Krimbas CB. 2000, Cambridge, U.K.: Cambridge University Press, 369-392.
Google Scholar
Fry JD: How common are overdominant mutations?. Genetics. 2004, 167: 1031-1032.
PubMed Central
PubMed
Google Scholar
Peters AD, Halligan DL, Whitlock MC, Keightley PD: Dominance and overdominance of mildly deleterious induced mutations for fitness traits in Caenorhabditis elegans. Genetics. 2003, 165: 589-599.
PubMed Central
CAS
PubMed
Google Scholar
Drake JW: A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. 1991, 88: 7160-7164.
PubMed Central
CAS
PubMed
Google Scholar
Drake JW, Charlesworth B, Charlesworth D, Crow JF: Rates of spontaneous mutation. Genetics. 1998, 148: 1667-1686.
PubMed Central
CAS
PubMed
Google Scholar
Pandian TJ, Koteeswaran R: Ploidy induction and sex control in fish. Hydrobiologia. 1998, 384: 167-243.
Google Scholar
Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005, 6: 836-846.
CAS
PubMed
Google Scholar
Balsano JS, Rasch EM, Monaco PJ: The evolutionary ecology of Poecilia formosa and its triploid associate. Ecology and evolution of livebearing fishes (Poeciliidae). Edited by: Meffe GK, Snelson FF. 1989, Englewood Cliffs, N.J.: Prentice Hall
Google Scholar
Pamilo P, Nei M, Li WH: Accumulation of mutations in sexual and asexual populations. Genet Res. 1987, 49: 135-146.
CAS
PubMed
Google Scholar
Gordo I, Charlesworth B: The degeneration of asexual haploid populations and the speed of Muller's ratchet. Genetics. 2000, 154: 1379-1387.
PubMed Central
CAS
PubMed
Google Scholar
Watterson GA: On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975, 7: 256-276.
CAS
PubMed
Google Scholar
Donaldson KA, Wilson RR: Amphi-panamic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rate in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol. 1999, 13: 208-213.
CAS
PubMed
Google Scholar
Knowlton N, Weigt LA, Solorzano LA, Mills DK, Bermingham E: Divergence in proteins, mitochondrial-DNA, and reproductive compatibility across the Isthmus of Panama. Science. 1993, 260: 1629-1632.
CAS
PubMed
Google Scholar
Howell N, Smejkal CB, Mackey DA, Chinnery PF, Turnbull DM, Herrnstadt C: The pedigree rate of sequence divergence in the human mitochondrial genome: there is a difference between phylogenetic and pedigree rates. Am J Hum Genet. 2003, 72: 659-670.
PubMed Central
CAS
PubMed
Google Scholar
Frankham R: Effective population size/adult population size ratios in wildlife – a review. Genet Res. 1995, 66: 95-107.
Google Scholar
McVean GAT, Vieira J: Inferring parameters of mutation, selection and demography from patterns of synonymous site evolution in Drosophila. Genetics. 2001, 157: 245-257.
PubMed Central
CAS
PubMed
Google Scholar
Woodhead AD, Setlow RB, Pond V: The Amazon molly, Poecilia formosa, as a test animal in carcinogenicity studies: chronic exposures to physical agents. Natl Cancer Inst Monogr. 1984, 65: 45-52.
CAS
PubMed
Google Scholar
Saillard J, Forster P, Lynnerup N, Bandelt HJ, Norby S: mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet. 2000, 67: 718-726.
PubMed Central
CAS
PubMed
Google Scholar
Graur D, Martin W: Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet. 2004, 20: 80-86.
CAS
PubMed
Google Scholar
Lynch M, Blanchard J, Houle D, Kibota T, Schultz S, Vassilieva L, Willis J: Perspective: Spontaneous deleterious mutation. Evolution. 1999, 53: 645-663.
Google Scholar
Baer CF, Miyamoto MM, Denver DR: Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet. 2007, 8: 619-631.
CAS
PubMed
Google Scholar
Lamatsch DK, Steinlein C, Schmid M, Schartl M: Non-invasive determination of genome size and ploidy level in fishes by flow cytometry: Detection of triploid Poecilia formosa. Cytometry. 2000, 39: 91-95.
CAS
PubMed
Google Scholar
Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS, Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR, Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M, Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE: Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 2002, 3: research0083.0081-0022.
Google Scholar
Gaffney DJ, Keightley PD: Genomic selective constraints in murid noncoding DNA. PLoS Genetics. 2006, 2: e204-
PubMed Central
PubMed
Google Scholar
Halligan DL, Keightley PD: Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. Genome Res. 2006, 16: 875-884.
PubMed Central
CAS
PubMed
Google Scholar
Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S: Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 2002, 297: 1301-1310.
CAS
PubMed
Google Scholar
Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Charlesworth B, Keightley PD: Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature. 2007, 445: 82-85.
CAS
PubMed
Google Scholar
Kibota TT, Lynch M: Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature. 1996, 381: 694-696.
CAS
PubMed
Google Scholar
Kimura M: The neutral theory of molecular evolution. 1983, Cambridge: Cambridge University Press
Google Scholar