Gray M, Freitag N, Boor K: How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun. 2006, 74 (5): 2505-2512. 10.1128/IAI.74.5.2505-2512.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nightingale K, Windham K, Wiedmann M: Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol. 2005, 187 (16): 5537-5551. 10.1128/JB.187.16.5537-5551.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gray M, Zadoks R, Fortes E, Dogan B, Cai S, Chen Y, Scott V, Gombas D, Boor K, Wiedmann M: Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol. 2004, 70 (10): 5833-5841. 10.1128/AEM.70.10.5833-5841.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sauders B, Durak M, Fortes E, Windham K, Schukken Y, Lembo A, Akey B, Nightingale K, Wiedmann M: Molecular characterization of Listeria monocytogenes from natural and urban environments. J Food Prot. 2006, 69 (1): 93-105.
CAS
PubMed
Google Scholar
Liu D, Lawrence M, Wiedmann M, Gorski L, Mandrell R, Ainsworth A, Austin F: Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J Clin Microbiol. 2006, 44 (11): 4229-4233. 10.1128/JCM.01032-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M: Genetic and Phenotypic Characterization of Listeria monocytogenes lineage III. Microbiology. 2006, 152 (3): 685-693. 10.1099/mic.0.28503-0.
Article
CAS
PubMed
Google Scholar
Fraser C, Hanage W, Spratt B: Recombination and the nature of bacterial speciation. Science. 2007, 315 (5811): 476-480. 10.1126/science.1127573.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spratt B, Hanage W, Feil E: The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol. 2001, 4 (5): 602-606. 10.1016/S1369-5274(00)00257-5.
Article
CAS
PubMed
Google Scholar
Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler L, Karch H, Reeves P, Maiden M, Ochman H, et al: Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol. 2006, 60 (5): 1136-1151. 10.1111/j.1365-2958.2006.05172.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Redfield R: Do bacteria have sex?. Nat Rev Genet. 2001, 2 (8): 634-639. 10.1038/35084593.
Article
CAS
PubMed
Google Scholar
Narra H, Ochman H: Of what use is sex to bacteria?. Curr Biol. 2006, 16 (17): R705-710. 10.1016/j.cub.2006.08.024.
Article
CAS
PubMed
Google Scholar
Retchless A, Lawrence J: Temporal fragmentation of speciation in bacteria. Science. 2007, 317 (5841): 1093-1096. 10.1126/science.1144876.
Article
CAS
PubMed
Google Scholar
Holmes EC, Urwin R, Maiden MC: The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol Biol Evol. 1999, 16 (6): 741-749.
Article
CAS
PubMed
Google Scholar
Didelot X, Falush D: Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007, 175 (3): 1251-1266. 10.1534/genetics.106.063305.
Article
PubMed Central
CAS
PubMed
Google Scholar
Orsi RH, Ripoll DR, Yeung M, Nightingale KK, Wiedmann M: Recombination and positive selection contribute to evolution of Listeria monocytogenes inlA. Microbiology. 2007, 153: 2666-2678. 10.1099/mic.0.2007/007310-0.
Article
CAS
PubMed
Google Scholar
Orsi RH, Sun Q, Wiedmann M: Genome-wide analyses reveal lineage specific contributions of positive selection and recombination to the evolution of Listeria monocytogenes. BMC Evol Biol. 2008, 8: 233-10.1186/1471-2148-8-233.
Article
PubMed Central
PubMed
Google Scholar
Pritchard J, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155 (2): 945-959.
PubMed Central
CAS
PubMed
Google Scholar
Nightingale K, Schukken Y, Nightingale C, Fortes E, Ho A, Her Z, Grohn Y, McDonough P, Wiedmann M: Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol. 2004, 70 (8): 4458-4467. 10.1128/AEM.70.8.4458-4467.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rozas J, Sánchez-DelBarrio J, Messeguer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003, 19 (18): 2496-2497. 10.1093/bioinformatics/btg359.
Article
CAS
PubMed
Google Scholar
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123 (3): 585-595.
PubMed Central
CAS
PubMed
Google Scholar
Gelman A, Rubin DB: Inference from Iterative Simulation Using Multiple Sequences. Statistical Science. 1992, 7 (4): 457-472. 10.1214/ss/1177011136.
Article
Google Scholar
Margush T, McMorris FR: Consensus n-Trees. Bulletin of Mathematical Biology. 1981, 43 (2): 239-244.
Google Scholar
Huson D, Bryant D: Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006, 23 (2): 254-267. 10.1093/molbev/msj030.
Article
CAS
PubMed
Google Scholar
Sawyer SA: GENECONV: A computer package for the statistical detection of gene conversion. Distributed by the author, Department of mathematics, Washington University in St louis. 1999, [http://www.math.wustl.edu/~sawyer/geneconv/]
Google Scholar
Milkman R, Bridges M: Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics. 1990, 126 (3): 505-517.
PubMed Central
CAS
PubMed
Google Scholar
Guttman DS, Dykhuizen DE: Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science. 1994, 266 (5189): 1380-1383. 10.1126/science.7973728.
Article
CAS
PubMed
Google Scholar
Fiala KI, Sokal RR: Factors determining the accuracy of cladogram estimation – evaluation using computer-simulation. Evolution. 1985, 39 (3): 609-622. 10.2307/2408656.
Article
Google Scholar
Kingman JFC: The Coalescent. Stochastic Processes and their Applications. 1982, 13: 235-248. 10.1016/0304-4149(82)90011-4.
Article
Google Scholar
Falush D, Stephens M, Pritchard J: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003, 164 (4): 1567-1587.
PubMed Central
CAS
PubMed
Google Scholar
Simonsen K, Churchill G, Aquadro C: Properties of statistical tests of neutrality for DNA polymorphism data. Genetics. 1995, 141 (1): 413-429.
PubMed Central
CAS
PubMed
Google Scholar
Nielsen R: Statistical tests of selective neutrality in the age of genomics. Heredity. 2001, 86: 641-647. 10.1046/j.1365-2540.2001.00895.x.
Article
CAS
PubMed
Google Scholar
Falush D, Wirth T, Linz B, Pritchard J, Stephens M, Kidd M, Blaser M, Graham D, Vacher S, Perez-Perez G, et al: Traces of human migrations in Helicobacter pylori populations. Science. 2003, 299 (5612): 1582-1585. 10.1126/science.1080857.
Article
CAS
PubMed
Google Scholar
Jolley KA, Wilson DJ, Kriz P, McVean G, Maiden MC: The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol. 2005, 22 (3): 562-569. 10.1093/molbev/msi041.
Article
CAS
PubMed
Google Scholar
Fraser C, Hanage W, Spratt B: Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci USA. 2005, 102 (6): 1968-1973. 10.1073/pnas.0406993102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rooney AP, Swezey JL, Friedman R, Hecht DW, Maddox CW: Analysis of core housekeeping and virulence genes reveals cryptic lineages of Clostridium perfringens that are associated with distinct disease presentations. Genetics. 2006, 172 (4): 2081-2092. 10.1534/genetics.105.054601.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meinersmann R, Phillips R, Wiedmann M, Berrang M: Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. Appl Environ Microbiol. 2004, 70 (4): 2193-2203. 10.1128/AEM.70.4.2193-2203.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ward T, Gorski L, Borucki M, Mandrell R, Hutchins J, Pupedis K: Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol. 2004, 186 (15): 4994-5002. 10.1128/JB.186.15.4994-5002.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Monnier AL, Brisse S: A New Perspective on Listeria monocytogenes Evolution. PLoS Pathog. 2008, 4 (9): e1000146-10.1371/journal.ppat.1000146.
Article
PubMed Central
PubMed
Google Scholar
Lefebure T, Stanhope MJ: Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol. 2007, 8 (5): R71-10.1186/gb-2007-8-5-r71.
Article
PubMed Central
PubMed
Google Scholar
Galtier N, Enard D, Radondy Y, Bazin E, Belkhir K: Mutation hot spots in mammalian mitochondrial DNA. Genome Res. 2006, 16 (2): 215-222. 10.1101/gr.4305906.
Article
PubMed Central
CAS
PubMed
Google Scholar
Snyder L, Champness W: Molecular Genetics of Bacteria. 2003, Washington, D.C.: ASM Press, 2
Google Scholar
Falush D, Kraft C, Taylor N, Correa P, Fox J, Achtman M, Suerbaum S: Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci USA. 2001, 98 (26): 15056-15061. 10.1073/pnas.251396098.
Article
PubMed Central
CAS
PubMed
Google Scholar
Borezee E, Msadek T, Durant L, Berche P: Identification in Listeria monocytogenes of MecA, a homologue of the Bacillus subtilis competence regulatory protein. J Bacteriol. 2000, 182 (20): 5931-5934. 10.1128/JB.182.20.5931-5934.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen Y, Ross WH, Gray MJ, Wiedmann M, Whiting RC, Scott VN: Attributing risk to Listeria monocytogenes subgroups: dose response in relation to genetic lineages. J Food Prot. 2006, 69 (2): 335-344.
PubMed
Google Scholar
Borucki M, Kim S, Call D, Smole S, Pagotto F: Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol. 2004, 42 (11): 5270-5276. 10.1128/JCM.42.11.5270-5276.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA: Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun. 1997, 65 (7): 2707-2716.
PubMed Central
CAS
PubMed
Google Scholar
Hewitt GM: The genetic legacy of the Quaternary ice ages. Nature. 2000, 405 (6789): 907-913. 10.1038/35016000.
Article
CAS
PubMed
Google Scholar
Seeliger HPR, Jones D: Listeria. Bergey's manual of Systematic Bacteriology. Edited by: Sneath PHA. 1986, Balrimore, MD, USA: Williams & Wilkins, 2: 1235-1245.
Google Scholar
Rasmussen OF, Skouboe P, Dons L, Rossen L, Olsen JE: Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology. 1995, 141 (Pt 9): 2053-2061.
Article
CAS
PubMed
Google Scholar
Hanage WP, Fraser C, Spratt BG: Fuzzy species among recombinogenic bacteria. BMC Biol. 2005, 3: 6-10.1186/1741-7007-3-6.
Article
PubMed Central
PubMed
Google Scholar
Bennett J, Jolley K, Sparling P, Saunders N, Hart C, Feavers I, Maiden MC: Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biol. 2007, 5: 35-10.1186/1741-7007-5-35.
Article
PubMed Central
PubMed
Google Scholar
Rosenberg NA: DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes. 2004, 4: 137-138. 10.1046/j.1471-8286.2003.00566.x.
Article
Google Scholar