Fisher RA: The distribution of gene ratios for rare mutations. Proc Roy Soc Edinburgh. 1930, 50: 204-219.
Google Scholar
Wright S: Evolution in Mendelian populations. Genetics. 1931, 16: 97-159.
PubMed Central
CAS
PubMed
Google Scholar
Kimura M: On the probability of fixation of mutant genes in a population. Genetics. 1962, 47: 713-719.
PubMed Central
CAS
PubMed
Google Scholar
Hill WG, Robertson A: The effect of linkage on limits to artificial selection. Genet Res. 1966, 8: 269-294.
Article
CAS
PubMed
Google Scholar
Felsenstein J: The evolutionary advantage of recombination. Genetics. 1974, 78: 737-756.
PubMed Central
CAS
PubMed
Google Scholar
Rice WR: Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet. 2002, 3: 241-251. 10.1038/nrg760.
Article
CAS
PubMed
Google Scholar
Otto SP, Lenormand T: Resolving the paradox of sex and recombination. Nat Rev Genet. 2002, 3: 252-261. 10.1038/nrg761.
Article
CAS
PubMed
Google Scholar
Gerton JL, DeRisi J, Schroff R, Lichten M, Brown PO, Petes TD: Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 2000, 97: 11383-11390. 10.1073/pnas.97.21.11383.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hey J, Kliman RM: Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics. 2002, 160: 595-608.
PubMed Central
CAS
PubMed
Google Scholar
Jensen-Seaman MI, Furey TS, Payseur BA, Lu YT, Roskin KM, Chen CF, Thomas MA, Haussler D, Jacob HJ: Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14: 528-538. 10.1101/gr.1970304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mezard C: Meiotic recombination hotspots in plants. Biochem Soc Trans. 2006, 34: 531-534. 10.1042/BST0340531.
Article
CAS
PubMed
Google Scholar
Barton NH: Linkage and the limits to natural selection. Genetics. 1995, 140: 821-841.
PubMed Central
CAS
PubMed
Google Scholar
Presgraves DC: Recombination enhances protein adaptation in Drosophila melanogaster. Curr Biol. 2005, 15: 1651-1656. 10.1016/j.cub.2005.07.065.
Article
CAS
PubMed
Google Scholar
Pal C, Papp B, Hurst LD: Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Mol Biol Evol. 2001, 18: 2323-2326.
Article
CAS
PubMed
Google Scholar
Betancourt AJ, Presgraves DC: Linkage limits the power of natural selection in Drosophila. Proc Nat Acad Sci USA. 2002, 99: 13616-13620. 10.1073/pnas.212277199.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bachtrog D: Protein evolution and codon usage bias on the neo-sex chromosomes of Drosophila miranda. Genetics. 2003, 165 (3): 1221-1232.
PubMed Central
CAS
PubMed
Google Scholar
Marais G, Domazet-Loso T, Tautz D, Charlesworth B: Correlated evolution of synonymous and nonsynonymous sites in Drosophila. J Mol Evol. 2004, 59: 771-779. 10.1007/s00239-004-2671-2.
Article
CAS
PubMed
Google Scholar
Zhang Z, Parsch J: Positive correlation between evolutionary rate and recombination rate in Drosophila genes with male-biased expression. Mol Biol Evol. 2005, 22: 1945-1947. 10.1093/molbev/msi189.
Article
CAS
PubMed
Google Scholar
Paland S, Lynch M: Transitions to asexuality result in excess amino acid substitutions. Science. 2006, 311: 990-992. 10.1126/science.1118152.
Article
CAS
PubMed
Google Scholar
Birky CW, Walsh JB: Effects of linkage on rates of molecular evolution. Proc Natl Acad Sci USA. 1988, 85: 6414-6418. 10.1073/pnas.85.17.6414.
Article
PubMed Central
CAS
PubMed
Google Scholar
Charlesworth B: The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res. 1994, 63: 213-227.
Article
CAS
PubMed
Google Scholar
Peck JR: A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics. 1994, 137: 597-606.
PubMed Central
CAS
PubMed
Google Scholar
Eyre-Walker A: The genomic rate of adaptive evolution. Trends Ecol Evol. 2006, 21: 569-575. 10.1016/j.tree.2006.06.015.
Article
PubMed
Google Scholar
Drummond DA, Bloom JD, Adami C, Wilke CO, Arnold FH: Why highly expressed proteins evolve slowly. Proc Natl Acad Sci USA. 2005, 102: 14338-14343. 10.1073/pnas.0504070102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pal C, Papp B, Lercher MJ: An integrated view of protein evolution. Nat Rev Genet. 2006, 7: 337-348. 10.1038/nrg1838.
Article
CAS
PubMed
Google Scholar
McInerney JO: The causes of protein evolutionary rate variation. Trends Ecol Evol. 2006, 21: 230-232. 10.1016/j.tree.2006.03.008.
Article
PubMed
Google Scholar
Rocha EPC: The quest for the universals of protein evolution. Trends Genet. 2006, 22: 412-416. 10.1016/j.tig.2006.06.004.
Article
CAS
PubMed
Google Scholar
Hirsh AE, Fraser HB: Protein dispensability and rate of evolution. Nature. 2001, 411: 1046-1049. 10.1038/35082561.
Article
CAS
PubMed
Google Scholar
Wall DP, Hirsh AE, Fraser HB, Kumm J, Giaever G, Eisen MB, Feldman MW: Functional genomic analysis of the rates of protein evolution. Proc Natl Acad Sci USA. 2005, 102: 5483-5488. 10.1073/pnas.0501761102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang J, He X: Significant impact of protein dispensability on the instantaneous rate of protein evolution. Mol Biol Evol. 2005, 22: 1147-1155. 10.1093/molbev/msi101.
Article
CAS
PubMed
Google Scholar
He X, Zhang J: Toward a molecular understanding of pleiotropy. Genetics. 2006, 173: 1885-1891. 10.1534/genetics.106.060269.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kimura M: The Neutral Theory of Molecular Evolution. 1983, Cambridge, Cambridge University Press
Book
Google Scholar
McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991, 351: 652-654. 10.1038/351652a0.
Article
CAS
PubMed
Google Scholar
Bierne N, Eyre-Walker A: The genomic rate of adaptive amino acid substitution in Drosophila. Mol Biol Evol. 2004, 21: 1350-1360. 10.1093/molbev/msh134.
Article
CAS
PubMed
Google Scholar
Kliman RM, Irving N, Santiago M: Selection conflicts, gene expression, and codon usage trends in yeast. J Mol Evol. 2003, 57: 98-109. 10.1007/s00239-003-2459-9.
Article
CAS
PubMed
Google Scholar
Datta A, Jinksrobertson S: Association of increased spontaneous mutation rates with high levels of transcription in yeast. Science. 1995, 268: 1616-1619. 10.1126/science.7777859.
Article
CAS
PubMed
Google Scholar
Holbeck SL, Strathern JN: A role for REV3 in mutagenesisduring double stranded break repair in Saccharomyces cerevisiae. Genetics. 1997, 147: 1017-1024.
PubMed Central
CAS
PubMed
Google Scholar
Fisher RA: The genetical theory of natural selection. 1930, Oxford: Clarendon Press
Book
Google Scholar
Orr HA: The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution. 1998, 52: 935-949. 10.2307/2411226.
Article
Google Scholar
Otto SP: Two steps forward, one step back: the pleiotropic effects of favoured alleles. Proc Roy Soc Lond B. 2004, 271: 705-714. 10.1098/rspb.2003.2635.
Article
Google Scholar
Hedrick PW: Genetics of populations. 1983, Boston: Science Books International
Google Scholar
Bell G: The masterpiece of nature. 1982, Berkeley: University of California Press
Google Scholar
Genbank. [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Popset]
Polymorphix Database. [http://pbil.univ-lyon1.fr/polymorphix/]
The Saccharomyces Genome Database. [http://www.yeastgenome.org/]
Data from Gerton et al. 2000. [http://derisilab14.ucsf.edu/hotspots/]
Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L: Population genomic analysis of outcrossing and recombination in yeast. Nat Genet. 2006, 38: 1077-1081. 10.1038/ng1859.
Article
CAS
PubMed
Google Scholar
McVean GAT, Charlesworth B: The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000, 155: 929-944.
PubMed Central
CAS
PubMed
Google Scholar
DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science. 1997, 278: 680-686. 10.1126/science.278.5338.680.
Article
CAS
PubMed
Google Scholar
Data from DeRisi et al. 1997. [http://cmgm.stanford.edu/pbrown/explore/array.txt]
Castillo-Davis CI, Hartl DL: GeneMerge – post-genomic analysis, data mining, and hypothesis testing. Bioinformatics. 2003, 19: 891-892. 10.1093/bioinformatics/btg114. [http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge/GeneMerge.html]
Article
CAS
PubMed
Google Scholar
ClustalW online. [http://www.ch.embnet.org/software/ClustalW-XXL.html]
Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R: DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003, 19: 2496-2497. 10.1093/bioinformatics/btg359.
Article
CAS
PubMed
Google Scholar
Hein J, Schierup MH, Wiuf C: Gene Genealogies, Variation and Evolution: A Primer in Coalescent Theory. 2005, New York: Oxford University Press
Google Scholar
Wloch DM, Szafraniec K, Borts RH, Korona R: Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccaromyces cerevisiae. Genetics. 2001, 159: 441-452.
PubMed Central
CAS
PubMed
Google Scholar
Keightley PD, Lynch M: Toward a realistic model of mutations affecting fitness. Evolution. 2003, 57: 683-685.
Article
PubMed
Google Scholar
Joseph SB, Hall DW: Spontaneous mutations in diploid Saccharomyces cerevisiae: More beneficial than expected. Genetics. 2004, 168: 1817-1825. 10.1534/genetics.104.033761.
Article
PubMed Central
PubMed
Google Scholar
Shaw FH, Geyer CJ, Shaw RG: A comprehensive model of mutations affecting fitness and inferences for Arabidobsis thaliana. Evolution. 2002, 56: 453-463.
Article
PubMed
Google Scholar
Shaw RG, Shaw FH, Geyer C: What fraction of mutations reduces fitness? A reply to Keightley and Lynch. Evolution. 2003, 57: 686-689.
Google Scholar