Pace NR: A molecular view of microbial diversity and the biosphere. Science. 1997, 276: 734-740. 10.1126/science.276.5313.734.
Article
CAS
PubMed
Google Scholar
Rappe MS, Giovannoni SJ: The uncultured microbial majority. Annu Rev Microbiol. 2003, 57: 369-394. 10.1146/annurev.micro.57.030502.090759.
Article
CAS
PubMed
Google Scholar
Keller M, Zengler K: Tapping into microbial diversity. Nat Rev Microbiol. 2004, 2: 141-150. 10.1038/nrmicro819.
Article
CAS
PubMed
Google Scholar
Handelsman J: Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev. 2004, 68: 669-685. 10.1128/MMBR.68.4.669-685.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF: Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000, 289: 1902-1906. 10.1126/science.289.5486.1902.
Article
CAS
PubMed
Google Scholar
Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF: Reverse methanogenesis: testing the hypothesis with environmental genomics. Science. 2004, 305: 1457-1462. 10.1126/science.1100025.
Article
CAS
PubMed
Google Scholar
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004, 428: 37-43. 10.1038/nature02340.
Article
CAS
PubMed
Google Scholar
Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM: Comparative metagenomics of microbial communities1. Science. 2005, 308: 554-557. 10.1126/science.1107851.
Article
CAS
PubMed
Google Scholar
Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM: Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol. 2004, 70: 2429-2436. 10.1128/AEM.70.4.2429-2436.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO: Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004, 304: 66-74. 10.1126/science.1093857.
Article
CAS
PubMed
Google Scholar
Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF: Proteorhodopsin phototrophy in the ocean. Nature. 2001, 411: 786-789. 10.1038/35081051.
Article
CAS
PubMed
Google Scholar
Bielawski JP, Dunn KA, Sabehi G, Beja O: Darwinian adaptation of proteorhodopsin to different light intensities in the marine environment. Proc Natl Acad Sci U S A. 2004, 101: 14824-14829. 10.1073/pnas.0403999101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Man D, Wang W, Sabehi G, Aravind L, Post AF, Massana R, Spudich EN, Spudich JL, Beja O: Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 2003, 22: 1725-1731. 10.1093/emboj/cdg183.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lorenz P, Eck J: Metagenomics and industrial applications1. Nat Rev Microbiol. 2005, 3: 510-516. 10.1038/nrmicro1161.
Article
CAS
PubMed
Google Scholar
Robertson DE, Mathur E, Swanson RV, Marrs BL, Short JM: The discovery of new biocatalysts from microbial diversity. Society for Industrial Microbiology News. 1996, 46: 3-8.
Google Scholar
Schloss PD, Handelsman J: Biotechnological prospects from metagenomics. Curr Opin Biotechnol. 2003, 14: 303-310. 10.1016/S0958-1669(03)00067-3.
Article
CAS
PubMed
Google Scholar
Short JM: Recombinant approaches for accessing biodiversity. Nat Biotechnol. 1997, 15: 1322-1323. 10.1038/nbt1297-1322.
Article
CAS
PubMed
Google Scholar
Brenner C: Catalysis in the nitrilase superfamily. Curr Opin Struct Biol. 2002, 12: 775-782. 10.1016/S0959-440X(02)00387-1.
Article
CAS
PubMed
Google Scholar
O'Reilly C, Turner PD: The nitrilase family of CN hydrolysing enzymes - a comparative study. J Appl Microbiol. 2003, 95: 1161-1174. 10.1046/j.1365-2672.2003.02123.x.
Article
PubMed
Google Scholar
Pace HC, Brenner C: The nitrilase superfamily: classification, structure and function. Genome Biol. 2001, 2: reviews0001.1–0001.9-10.1186/gb-2001-2-1-reviews0001.
Article
Google Scholar
Lathe WCIII, Snel B, Bork P: Gene context conservation of a higher order than operons. Trends Biochem Sci. 2000, 25: 474-479. 10.1016/S0968-0004(00)01663-7.
Article
CAS
PubMed
Google Scholar
Rogozin IB, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV: Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res. 2002, 30: 2212-2223. 10.1093/nar/30.10.2212.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lawrence JG: Gene organization: selection, selfishness, and serendipity. Annu Rev Microbiol. 2003, 57: 419-440. 10.1146/annurev.micro.57.030502.090816.
Article
CAS
PubMed
Google Scholar
Price MN, Huang KH, Alm EJ, Arkin AP: A novel method for accurate operon predictions in all sequenced prokaryotes3. Nucleic Acids Res. 2005, 33: 880-892. 10.1093/nar/gki232.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gough J, Karplus K, Hughey R, Chothia C: Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001, 313: 903-919. 10.1006/jmbi.2001.5080.
Article
CAS
PubMed
Google Scholar
Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE: Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 2001, 29: 1097-1106. 10.1093/nar/29.5.1097.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wybenga-Groot LE, Draker K, Wright GD, Berghuis AM: Crystal structure of an aminoglycoside 6'-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure Fold Des. 1999, 7: 497-507. 10.1016/S0969-2126(99)80066-5.
Article
CAS
PubMed
Google Scholar
Sulavik MC, Gambino LF, Miller PF: The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol Med. 1995, 1: 436-446.
PubMed Central
CAS
PubMed
Google Scholar
Allard ST, Giraud MF, Naismith JH: Epimerases: structure, function and mechanism. Cell Mol Life Sci. 2001, 58: 1650-1665.
Article
CAS
PubMed
Google Scholar
Tanner ME: Understanding nature's strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res. 2002, 35: 237-246. 10.1021/ar000056y.
Article
CAS
PubMed
Google Scholar
Fretland AJ, Omiecinski CJ: Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact. 2000, 129: 41-59. 10.1016/S0009-2797(00)00197-6.
Article
CAS
PubMed
Google Scholar
Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000, 15: 496-503. 10.1016/S0169-5347(00)01994-7.
Article
PubMed
Google Scholar
Yang Z: Inference of selection from multiple species alignments. Curr Opin Genet Dev. 2002, 12: 688-694. 10.1016/S0959-437X(02)00348-9.
Article
CAS
PubMed
Google Scholar
Bielawski JP, Yang Z: Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics. 2003, 3: 201-212. 10.1023/A:1022642807731.
Article
CAS
PubMed
Google Scholar
Zhang J, Rosenberg HF, Nei M: Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc Natl Acad Sci U S A. 1998, 95: 3708-3713. 10.1073/pnas.95.7.3708.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muse SV, Gaut BS: A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994, 11: 715-724.
CAS
PubMed
Google Scholar
Ohno S: Evolution by Gene Duplication. 1970, Springer
Book
Google Scholar
Dykhuizen D, Hartl DL: Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980, 96: 801-817.
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez-Trelles F, Tarrio R, Ayala FJ: Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci U S A. 2003, 100: 13413-13417. 10.1073/pnas.1835646100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol. 2003, 18: 292-298. 10.1016/S0169-5347(03)00033-8.
Article
Google Scholar
Suzuki Y, Nei M: Simulation study of the reliability and robustness of the statistical methods for detecting positive selection at single amino acid sites. Mol Biol Evol. 2002, 19: 1865-1869.
Article
CAS
PubMed
Google Scholar
Suzuki Y, Nei M: False positive selection identified by ML-based methods: examples from the Sig1 gene of the diatom Thalassiosira weissflogii and the tax gene of a human T-cell lymphotropic virus. Mol Biol Evol. 2004, 21: 914-921. 10.1093/molbev/msh098.
Article
CAS
PubMed
Google Scholar
Wong WS, Yang Z, Goldman N, Nielsen R: Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics. 2004, 168: 1041-1051. 10.1534/genetics.104.031153.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang Z, Nielsen R, Goldman N, Pedersen AM: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000, 155: 431-449.
PubMed Central
CAS
PubMed
Google Scholar
Endo T, Ikeo K, Gojobori T: Large-scale search for genes on which positive selection may operate5. Mol Biol Evol. 1996, 13: 685-690.
Article
CAS
PubMed
Google Scholar
Yang Z, Nielsen R: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002, 19: 908-917.
Article
CAS
PubMed
Google Scholar
Pace HC, Hodawadekar SC, Draganescu A, Huang J, Bieganowski P, Pekarsky Y, Croce CM, Brenner C: Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol. 2000, 10: 907-917. 10.1016/S0960-9822(00)00621-7.
Article
CAS
PubMed
Google Scholar
Wang WC, Hsu WH, Chien FT, Chen CY: Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft. J Mol Biol. 2001, 306: 251-261. 10.1006/jmbi.2000.4380.
Article
CAS
PubMed
Google Scholar
Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N: The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A. 1999, 96: 2896-2901. 10.1073/pnas.96.6.2896.
Article
PubMed Central
CAS
PubMed
Google Scholar
Itoh T, Takemoto K, Mori H, Gojobori T: Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol. 1999, 16: 332-346.
Article
CAS
PubMed
Google Scholar
Tan K, Moreno-Hagelsieb G, Collado-Vides J, Stormo GD: A comparative genomics approach to prediction of new members of regulons. Genome Res. 2001, 11: 566-584. 10.1101/gr.149301.
Article
PubMed Central
CAS
PubMed
Google Scholar
Osterman A, Overbeek R: Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol. 2003, 7: 238-251. 10.1016/S1367-5931(03)00027-9.
Article
CAS
PubMed
Google Scholar
Tamames J: Evolution of gene order conservation in prokaryotes. Genome Biol. 2001, 2 (6): Research0020-10.1186/gb-2001-2-6-research0020.
Article
PubMed Central
CAS
PubMed
Google Scholar
Makarova KS, Koonin EV: Comparative genomics of Archaea: how much have we learned in six years, and what's next?. Genome Biol. 2003, 4: 115-10.1186/gb-2003-4-8-115.
Article
PubMed Central
PubMed
Google Scholar
Babbitt PC: Definitions of enzyme function for the structural genomics era. Curr Opin Chem Biol. 2003, 7: 230-237. 10.1016/S1367-5931(03)00028-0.
Article
CAS
PubMed
Google Scholar
DeLong EF: Microbial population genomics and ecology: the road ahead. Environ Microbiol. 2004, 6: 875-878. 10.1111/j.1462-2920.2004.00668.x.
Article
PubMed
Google Scholar
Rodriguez-Valera F: Environmental genomics, the big picture. FEMS Microbiol Lett. 2004, 231: 153-158. 10.1016/S0378-1097(04)00006-0.
Article
CAS
PubMed
Google Scholar
The Institute for Genome Research. 2005, [http://www.tigr.org]
DOE Joint Genome Institute. 2005, [http://www.jgi.doe.gov/]
Hall T: BioEdit. 2005, [http://www.mbio.ncsu.edu/BioEdit/bioedit.html]
Google Scholar
Felsenstein J: PHYLIP -- Phylogeny Inference Package (Version 3.2). Cladistics. 1989, 5: 164-166.
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002, 18: 502-504. 10.1093/bioinformatics/18.3.502.
Article
CAS
PubMed
Google Scholar
Swofford DL: PAUP*: phylogenetic analysis using parsimony (*and other methods). 1998, Sinauer Associates, Sunderland, Mass., [http://paup.csit.fsu.edu/about.html]
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13: 555-556.
CAS
PubMed
Google Scholar
Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol. 1998, 15: 568-573.
Article
CAS
PubMed
Google Scholar
Xiang SZ Jackal: A Protein Structure Modeling Package. 2005, [http://honiglab.cpmc.columbia.edu/programs/jackal]
Google Scholar
DeLano WL: The PyMOL Molecular Graphics System. 2002, DeLano Scientific, San Carlos, CA, USA., [http://www.pymol.org]
Google Scholar