Acar M, Becskei A, Van Oudenaarden A: Enhancement of cellular memory by reducing stochastic transitions. Nature. 2005, 435: 228-232. 10.1038/nature03524.
Article
PubMed
CAS
Google Scholar
Kaern M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet. 2005, 6: 451-464. 10.1038/nrg1615.
Article
PubMed
CAS
Google Scholar
Mettetal JT, Muzzey D, Pedraza JM, Ozbudak EM, Van Oudenaarden A: Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci U S A. 2006, 103: 7304-7309. 10.1073/pnas.0509874103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell. 2009, 136: 215-233. 10.1016/j.cell.2009.01.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Siciliano V, Garzilli I, Fracassi C, Criscuolo S, Ventre S, Di Bernardo D: miRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat Commun. 2013, 4: 2364-
Article
PubMed
Google Scholar
Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM: Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell. 2005, 123: 1133-1146. 10.1016/j.cell.2005.11.023.
Article
PubMed
CAS
Google Scholar
Lai EC: Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002, 30: 363-364. 10.1038/ng865.
Article
PubMed
CAS
Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798. 10.1016/S0092-8674(03)01018-3.
Article
PubMed
CAS
Google Scholar
Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19: 92-105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xu P, Guo M, Hay BA: MicroRNAs and the regulation of cell death. Trends Genet. 2004, 20: 617-624. 10.1016/j.tig.2004.09.010.
Article
PubMed
CAS
Google Scholar
Maes OC, Chertkow HM, Wang E, Schipper HM: MicroRNA: Implications for Alzheimer Disease and other Human CNS Disorders. Curr Genomics. 2009, 10: 154-168. 10.2174/138920209788185252.
Article
PubMed
CAS
PubMed Central
Google Scholar
Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A: The microRNA cluster miR-106b 25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 2011, 3: 108-124.
CAS
Google Scholar
Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005, 310: 1817-1821. 10.1126/science.1121158.
Article
PubMed
CAS
Google Scholar
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007, 27: 91-105. 10.1016/j.molcel.2007.06.017.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP: The impact of microRNAs on protein output. Nature. 2008, 455: 64-71. 10.1038/nature07242.
Article
PubMed
CAS
PubMed Central
Google Scholar
Betel D, Koppal A, Agius P, Sander C, Leslie C: Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010, 11: R90-10.1186/gb-2010-11-8-r90.
Article
PubMed
PubMed Central
Google Scholar
Iwama H, Masaki T, Kuriyama S: Abundance of microRNA target motifs in the 3'-UTRs of 20527 human genes. FEBS Lett. 2007, 581: 1805-1810. 10.1016/j.febslet.2007.03.066.
Article
PubMed
CAS
Google Scholar
Bartel DP, Chen CZ: Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet. 2004, 5: 396-400.
Article
PubMed
CAS
Google Scholar
Karres JS, Hilgers V, Carrera I, Treisman J, Cohen SM: The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell. 2007, 131: 136-145. 10.1016/j.cell.2007.09.020.
Article
PubMed
CAS
Google Scholar
Bruno IG, Karam R, Huang L, Bhardwaj A, Lou CH, Shum EY, Song HW, Corbett MA, Gifford WD, Gecz J, Pfaff SL, Wilkinson MF: Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol Cell. 2011, 42: 500-510. 10.1016/j.molcel.2011.04.018.
Article
PubMed
CAS
PubMed Central
Google Scholar
Whichard ZL, Motter AE, Stein PJ, Corey SJ: Slowly produced microRNAs control protein levels. J Biol Chem. 2011, 286: 4742-4748. 10.1074/jbc.M110.166348.
Article
PubMed
CAS
PubMed Central
Google Scholar
Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, Leslie CS, Rudensky AY: Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell. 2012, 48: 760-770. 10.1016/j.molcel.2012.10.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng-Bradley X, Rung J, Parkinson H, Brazma A: Large scale comparison of global gene expression patterns in human and mouse. Genome Biol. 2010, 11: R124-10.1186/gb-2010-11-12-r124.
Article
PubMed
CAS
PubMed Central
Google Scholar
Murphy KF, Balazsi G, Collins JJ: Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A. 2007, 104: 12726-12731. 10.1073/pnas.0608451104.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F: Mammalian genes are transcribed with widely different bursting kinetics. Science. 2011, 332: 472-474. 10.1126/science.1198817.
Article
PubMed
CAS
Google Scholar
Raveh-Sadka T, Levo M, Shabi U, Shany B, Keren L, Lotan-Pompan M, Zeevi D, Sharon E, Weinberger A, Segal E: Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast. Nat Genet. 2012, 44: 743-750. 10.1038/ng.2305.
Article
PubMed
CAS
Google Scholar
Bai L, Charvin G, Siggia ED, Cross FR: Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. Dev Cell. 2010, 18: 544-555. 10.1016/j.devcel.2010.02.007.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dadiani M, Van Dijk D, Segal B, Field Y, Ben-Artzi G, Raveh-Sadka T, Levo M, Kaplow I, Weinberger A, Segal E: Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Res. 2013, 23: 966-976. 10.1101/gr.149096.112.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tillo D, Hughes TR: G + C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics. 2009, 10: 442-10.1186/1471-2105-10-442.
Article
PubMed
PubMed Central
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets in Drosophila. Genome Biol. 2003, 5: R1-10.1186/gb-2003-5-1-r1.
Article
PubMed
PubMed Central
Google Scholar
Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits. 2007, Boca Raton, FL: Chapman & Hall/CRC
Google Scholar
Singh A: Negative feedback through mRNA provides the best control of gene-expression noise. IEEE Trans Nanobioscience. 2011, 10: 194-200.
Article
PubMed
Google Scholar
Cheng C, Bhardwaj N, Gerstein M: The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics. 2009, 10: 431-10.1186/1471-2164-10-431.
Article
PubMed
PubMed Central
Google Scholar
Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A: Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004, 14: 1719-1725. 10.1101/gr.2855504.
Article
PubMed
CAS
PubMed Central
Google Scholar
Polak P, Domany E: Alu elements contain many binding sites for transcription factors and may play a role in regulation of developmental processes. BMC Genomics. 2006, 7: 133-10.1186/1471-2164-7-133.
Article
PubMed
PubMed Central
Google Scholar
Engstrom PG, Fredman D, Lenhard B: Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes. Genome Biol. 2008, 9: R34-10.1186/gb-2008-9-2-r34.
Article
PubMed
PubMed Central
Google Scholar
Punnamoottil B, Herrmann C, Pascual-Anaya J, D'Aniello S, Garcia-Fernandez J, Akalin A, Becker TS, Rinkwitz S: Cis-regulatory characterization of sequence conservation surrounding the Hox4 genes. Dev Biol. 2010, 340: 269-282. 10.1016/j.ydbio.2010.01.035.
Article
PubMed
CAS
Google Scholar
Nelson AC, Wardle FC: Conserved non-coding elements and cis regulation: actions speak louder than words. Development. 2013, 140: 1385-1395. 10.1242/dev.084459.
Article
PubMed
CAS
Google Scholar
Felsenstein J, Churchill GA: A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol. 1996, 13: 93-104. 10.1093/oxfordjournals.molbev.a025575.
Article
PubMed
CAS
Google Scholar
Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y: MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A. 2010, 107: 1876-1881. 10.1073/pnas.0908750107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Martinez NJ, Walhout AJ: The interplay between transcription factors and microRNAs in genome-scale regulatory networks. Bioessays. 2009, 31: 435-445. 10.1002/bies.200800212.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lin CC, Liu LZ, Addison JB, Wonderlin WF, Ivanov AV, Ruppert JM: A KLF4-miRNA-206 autoregulatory feedback loop can promote or inhibit protein translation depending upon cell context. Mol Cell Biol. 2011, 31: 2513-2527. 10.1128/MCB.01189-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan Y, Dong H, Wang F, Gong B, Zhu Y, Dong L, Yin H, Zhang Z, Zhao H, Wu Z, Zhang J, Zhou J, Yu J: A feedback loop consisting of microRNA-23a/27a and the beta-like globin suppressors KLF3 and SP1 regulates globin gene expression. Mol Cell Biol. 2013, 33 (20): 3994-4007. 10.1128/MCB.00623-13.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nazarov PV, Reinsbach SE, Muller A, Nicot N, Philippidou D, Vallar L, Kreis S: Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function. Nucleic Acids Res. 2013, 41: 2817-2831. 10.1093/nar/gks1471.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005, 120: 15-20. 10.1016/j.cell.2004.12.035.
Article
PubMed
CAS
Google Scholar
Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol. 2011, 18: 1139-1146. 10.1038/nsmb.2115.
Article
PubMed
CAS
PubMed Central
Google Scholar
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z: GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 2009, 10: 48-10.1186/1471-2105-10-48.
Article
PubMed
PubMed Central
Google Scholar
Xiao SJ, Zhang C, Zou Q, Ji ZL: TiSGeD: a database for tissue-specific genes. Bioinformatics. 2010, 26: 1273-1275. 10.1093/bioinformatics/btq109.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gupta S, Dennis J, Thurman RE, Kingston R, Stamatoyannopoulos JA, Noble WS: Predicting human nucleosome occupancy from primary sequence. PLoS Comput Biol. 2008, 4: e1000134-10.1371/journal.pcbi.1000134.
Article
PubMed
PubMed Central
Google Scholar