Kimura M: A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980, 16: 111-120. 10.1007/BF01731581.
Article
CAS
PubMed
Google Scholar
Hasegawa M, Kishino H, Yano T: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985, 22: 160-174. 10.1007/BF02101694.
Article
CAS
PubMed
Google Scholar
Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993, 10: 512-526.
CAS
PubMed
Google Scholar
Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure,. Edited by: Dayhoff MO. Washington D.C., National Biomedical Research Foundation; 1978:345–352
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. CABIOS. 1992, 8: 275-282.
CAS
PubMed
Google Scholar
Adachi J, Hasegawa M: Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol. 1996, 42: 459-468. 10.1007/BF02498640.
Article
CAS
PubMed
Google Scholar
Yang Z, Nielsen R, Hasegawa M: Models of amino acid substitution and application to mitochondrial protein evolution. Mol Biol Evol. 1998, 15: 1600-1611. 10.1093/oxfordjournals.molbev.a025888.
Article
CAS
PubMed
Google Scholar
Adachi J, Waddell PJ, Martin W, Hasegawa M: Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol. 2000, 50: 348-358.
CAS
PubMed
Google Scholar
Dimmic MW, Mindell DP: Goldstein RA: Modelling evolution at the protein level using an adjustable amino acid fitness model. Pac Symp Biocomput. 5: 18-29.
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 18: 691-699.
Le SQ, Gascuel O: An improved general amino acid replacement matrix. Mol Biol Evol. 2008, 25: 1307-1320. 10.1093/molbev/msn067.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Joyce P, Lakner C, Ronquist F: Bayesian analysis of amino acid substitution models. Phil Trans R Soc B. 2008, 363: 3941-3953. 10.1098/rstb.2008.0175.
Article
CAS
PubMed Central
PubMed
Google Scholar
Miyazawa S, Jernigan RL: A new substitution matrix for protein sequence searches based on contact frequencies in protein structures. Protein Eng. 1993, 6: 267-278. 10.1093/protein/6.3.267.
Article
CAS
PubMed
Google Scholar
Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA. Mol Biol Evol. 1994, 11: 725-736.
CAS
PubMed
Google Scholar
Muse SV, Gaut BS: Nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol. 1994, 11: 715-724.
CAS
PubMed
Google Scholar
Whelan S, Goldman N: Estimating the frequency of events that cause multiple-nucleotide changes. Genetics. 2004, 167: 2027-2043. 10.1534/genetics.103.023226.
Article
CAS
PubMed Central
PubMed
Google Scholar
Yang Z, Nielsen R: Mutation-selection models of codon substitution and their use to estimate selective strengths on codon usage. Mol Biol Evol. 2008, 25: 568-579. 10.1093/molbev/msm284.
Article
CAS
PubMed
Google Scholar
Yang Z, Nielsen R, Goldman N, Pedersen A-MK: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics. 2000, 155: 431-449.
CAS
PubMed Central
PubMed
Google Scholar
Doron-Faigenboim A, Pupko T: A combined empirical and mechanistic codon model. Mol Biol Evol. 2007, 24: 388-397.
Article
CAS
PubMed
Google Scholar
Seo TK, Kishino H: Synonymous substitutions substantially improve evolutionary inference from highly diverged proteins. Syst Biol. 2008, 57: 367-377. 10.1080/10635150802158670.
Article
CAS
PubMed
Google Scholar
Seo TK, Kishino H: Statistical comparison of nucleotide, amino acid, and codon substitution models for evolutionary analysis of protein-coding sequences. Syst Biol. 2009, 58: 199-210. 10.1093/sysbio/syp015.
Article
CAS
PubMed
Google Scholar
Delport W, Scheffler K, Gravenor MB, Muse SV, Kosakovsky PS: Benchmarking multi-rate codon models. PLoS One. 2010, 5: 11587-10.1371/journal.pone.0011587.
Article
Google Scholar
Delport W, Scheffler K, Botha G, Gravenor MB, Muse SV, Kosakovsky PS: CodonTest: modeling amino acid substitution preferences in coding sequences. PLoS Comp Biol. 2010, 6: 1000885-10.1371/journal.pcbi.1000885.
Article
Google Scholar
Halpern AL, Bruno WJ: Evolutionary distances for protein-coding sequences: modeling site-specific residue frequencies. Mol Biol Evol. 1998, 15: 910-917. 10.1093/oxfordjournals.molbev.a025995.
Article
CAS
PubMed
Google Scholar
Kosiol C, Holmes I, Goldman N: An empirical codon model for protein sequence evolution. Mol Biol Evol. 2007, 24: 1464-1479. 10.1093/molbev/msm064.
Article
CAS
PubMed
Google Scholar
Miyazawa S: Selective constraints on amino acids estimated by a mechanistic codon substitution model with multiple nucleotide changes. PLoS One. 2011, 6: 17244-10.1371/journal.pone.0017244.
Article
Google Scholar
Miyazawa S: Advantages of a mechanistic codon substitution model for evolutionary analysis of protein-coding sequences. PLoS One. 2001, 6: 28892-
Article
Google Scholar
Zhong B, Yonezawa T, Zhong Y, Hasegawa M: The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol. 2010, 10: 1093-
Google Scholar
Dang CC, Le SQ, Gascuel O, Le VS: Flu, an amino acid substitution model for influenza proteins. BMC Evol Biol. 2008, 8: 331-10.1186/1471-2148-8-331.
Article
Google Scholar
Murrell B, Weighill T, Buys J, Ketteringham R, Moola S, Benade G, du Buisson L, Kaliski D, Hands T, Scheffler K: Non-negative matrix factorization for learning alignment-specific models of protein evolution. PLoS One. 2011, 6: 28898-10.1371/journal.pone.0028898.
Article
Google Scholar
Zoller S, Schneider A: Improving phylogenetic inference with a semiempirical amino acid substitution model. Mol Biol Evol. 2013, 30: 469-479. 10.1093/molbev/mss229.
Article
CAS
PubMed
Google Scholar
Akaike H: A new look at the statistical model identification. IEEE Trans Autom Contr. 1974, AC-19: 716-723.
Article
Google Scholar
Schwarz G: Estimating the dimension of a model. Ann Stat. 1974, 6: 461-464.
Article
Google Scholar
Nikaido M, Cao Y, Harada M, Okada N, Hasegawa M: Mitochondrial phylogeny of hedgehogs and monophyly of eulipotyphla. Mol Phylogenet Evol. 2003, 28: 276-284. 10.1016/S1055-7903(03)00120-9.
Article
CAS
PubMed
Google Scholar
Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Chumley TW, Lee S-B Peery, McNeal JR, Kuehl JV, Boore JL: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA. 2007, 104: 19369-19374. 10.1073/pnas.0709121104.
Article
CAS
PubMed Central
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP: FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010, 5: 9490-10.1371/journal.pone.0009490.
Article
Google Scholar
Guindon S, Gascuel O: Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Yang Z: Maximum likelihood phylogenetic estimation from DNA, sequences with variable rates over sites: approximate methods. J Mol Evol. 1994, 39: 306-314. 10.1007/BF00160154.
Article
CAS
PubMed
Google Scholar
Yang Z: A space-time process model for the evolution of DNA, sequences. Genetics. 1995, 139: 993-1005.
CAS
PubMed Central
PubMed
Google Scholar
Go M, Miyazawa S: Volume and polarity changes accompanied by amino acid substitutions in protein evolution. Int J Pept Protein Res. 1978, 12: 237-241.
Article
CAS
PubMed
Google Scholar
Go M, Miyazawa S: Relationship between mutability, polarity and exteriority of amino acid residues in protein evolution. Int J Peptide Protein Res. 1980, 15: 211-224.
Article
CAS
Google Scholar
Lartillot N, Philippe H: A bayesian mixture model for acrosssite heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004, 21: 1095-1109. 10.1093/molbev/msh112.
Article
CAS
PubMed
Google Scholar
Wang HC, Li K, Susko E, Roger AJ: A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny. BMC Evol Biol. 1996, 11: 158-163.
Google Scholar
Le SQ, Gascuel O, Lartillot N: Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics. 2008, 24: 2317-2323. 10.1093/bioinformatics/btn445.
Article
Google Scholar
Le SQ, Lartillot N, Gascuel O: Phylogenetic mixture models for proteins. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 3965-3976. 10.1098/rstb.2008.0180.
Article
CAS
PubMed Central
PubMed
Google Scholar
Le SQ, Dang CC, Gascuel O: Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol Biol Evol. 2012, 29: 2921-2936. 10.1093/molbev/mss112.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG: Clustalw and clustalx version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Katoh K, Standley DM: Mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013, 30: 772-780. 10.1093/molbev/mst010.
Article
CAS
PubMed Central
PubMed
Google Scholar