Douglas AE: Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc. 1989, 64: 409-434. 10.1111/j.1469-185X.1989.tb00682.x.
Article
CAS
PubMed
Google Scholar
Moran NA, Munson MA, Baumann P, Ishikawa H: A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc Roy Soc London Ser B. 1993, 253: 167-171. 10.1098/rspb.1993.0098.
Article
Google Scholar
Baumann P: Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol. 2005, 59: 155-189. 10.1146/annurev.micro.59.030804.121041.
Article
CAS
PubMed
Google Scholar
Johnson KP, Clayton DH: The biology, ecology, and evolution of chewing lice. The chewing lice: world checklist and biological overview. Edited by: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH. 2003, Illinois: Natural History Survey Special Publication, 449-476. 24
Google Scholar
Bush SE, Price RD, Clayton DH: Descriptions of eight new species of feather lice in the genus Columbicola (Phthiraptera: Philopteridae), with a comprehensive world checklist. J Parasitol. 2009, 95: 286-294. 10.1645/GE-1799.1.
Article
PubMed
Google Scholar
Malenke JR, Johnson KP, Clayton DH: Host specialization differentiates cryptic species of feather-feeding lice. Evolution. 2009, 63: 1427-1438. 10.1111/j.1558-5646.2009.00642.x.
Article
PubMed
Google Scholar
Harbison CW, Bush SE, Malenke JR, Clayton DH: Comparative transmission dynamics of competing parasite species. Ecology. 2008, 89: 3186-3194. 10.1890/07-1745.1.
Article
Google Scholar
Harbison CW, Clayton DH: Community interactions govern host switching with implications for host-parasite coevolutionary history. PNAS. 2011, 108: 9525-9529. 10.1073/pnas.1102129108.
Article
CAS
PubMed Central
PubMed
Google Scholar
Clayton DH, Adams RJ, Bush SE: Phthiraptera, the Chewing Lice. Parasitic diseases of wild birds. Edited by: Atkinson CT, Thomas NJ, Hunter DB. 2008, Ames, Iowa: Wiley-Blackwell, 515-526.
Google Scholar
Gillespie JM, Frenkel MJ: The diversity of keratins. Comp Biochem Physiol. 1974, 47B: 339-346.
Google Scholar
Waterhouse DF: Digestion in insects. Ann Rev Entomol. 1957, 2: 1-18. 10.1146/annurev.en.02.010157.000245.
Article
Google Scholar
Ries E: Die Symbiose der Lause und Federlinge. Z Morphol Oekol Tiere. 1931, 20: 233-367. 10.1007/BF00444101.
Article
Google Scholar
Fukatsu T, Koga R, Smith WA, Tanaka K, Nikoh N, Sasaki-Fukatsu K, Yoshizawa K, Dale C, Clayton DH: Bacterial endosymbiont of the slender pigeon louse Columbicola columbae, allied to endosymbionts of grain weevils and tsetse flies. App Environ Microbiol. 2007, 73: 6660-6669. 10.1128/AEM.01131-07.
Article
CAS
Google Scholar
Marshall RC, Orwin DFG, Gillespie JM: Structure and biochemistry of mammalian hard keratin. Electron Microsc Rev. 1991, 4: 47-83. 10.1016/0892-0354(91)90016-6.
Article
CAS
PubMed
Google Scholar
Pei AY, Oberdorf WE, Nossa CW, Agarwal A, Chokshi P, Gerz EA, Jin Z, Lee P, Yang L, Poles M, Brown SM, Sotero S, Desantis T, Brodie E, Nelson K, Pei Z: Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl Environ Microbiol. 2010, 76: 3886-3897. 10.1128/AEM.02953-09.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wuyts J, Van de Peer Y, De Wachter R: Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucl Acids Res. 2001, 29: 5017-5028. 10.1093/nar/29.24.5017.
Article
CAS
PubMed Central
PubMed
Google Scholar
Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, von Niederhausern AC, Weiss RB, Fisher M, Dale C: A novel human-infection derived bacterium provides insights into the evolutionary origins of mutualistic insect-bacterial symbioses. PLoS Genet. 2012, 8 (11): e1002990-10.1371/journal.pgen.1002990.
Article
CAS
PubMed Central
PubMed
Google Scholar
Herbeck JT, Degnan PH, Wernegreen JJ: Non-homogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria). Mol Biol Evol. 2004, 22: 20-532.
Article
Google Scholar
Hoy MA, Jeyaprakash A: Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control. 2005, 32: 427-441. 10.1016/j.biocontrol.2004.12.012.
Article
Google Scholar
Shimodira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999, 16: 1114-1116. 10.1093/oxfordjournals.molbev.a026201.
Article
Google Scholar
Johnson KP, Reed DL, Hammond Parker SL, Kim D, Clayton DH: Phylogenetic analysis of nuclear and mitochondrial genes supports species groups for Columbicola (Insecta: Phthiraptera). Mol Phyl Evol. 2007, 45: 506-518. 10.1016/j.ympev.2007.07.005.
Article
CAS
Google Scholar
Page RDM: TreeMap for Macintosh, ver. 1. 0b. 1995, http://taxonomy.zoology.gla.ac.uk/rod/treemap.html,
Google Scholar
Robinson-Rechavi M, Huchon D: RRTree: Relative-Rate Tests between groups of sequences on a phylogenetic tree. Bioinformatics. 2000, 16: 296-297. 10.1093/bioinformatics/16.3.296.
Article
CAS
PubMed
Google Scholar
Moran NA, McCutcheon JP, Nakabachi A: Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008, 42: 165-190. 10.1146/annurev.genet.41.110306.130119.
Article
CAS
PubMed
Google Scholar
Lefevre CH, Charles A, Vallier B, Delobel B, Farrell B, Heddi A: Endosymbiont phylogenesis in the dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol. 2004, 21: 965-973. 10.1093/molbev/msh063.
Article
CAS
PubMed
Google Scholar
Conord CL, Despres A, Vallier A, Balmand A, Miquel C, Zundel S, Lemperiere G, Heddi A: Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol. 2008, 25: 859-868. 10.1093/molbev/msn027.
Article
CAS
PubMed
Google Scholar
Hypsa V, Krizek J: Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microb Ecol. 2007, 54: 242-251. 10.1007/s00248-006-9194-x.
Article
CAS
PubMed
Google Scholar
Pereira SL, Johnson KP, Clayton DH, Baker AJ: Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and dispersal-driven radiation in the Paleogene. Syst Biol. 2007, 56: 656-672. 10.1080/10635150701549672.
Article
CAS
PubMed
Google Scholar
Johnson KP, Weckstein JD: The Central American land bridge as an engine of diversification in New World doves. J Biogeography. 2011, 38: 1069-1076. 10.1111/j.1365-2699.2011.02501.x.
Article
Google Scholar
Fukatsu T, Ishikawa H: A novel eukaryotic extracellular symbiont in an aphid, Astegopteryx styraci (Homoptera, Aphididae, Hormaphidinae). J Insect Physiol. 1992, 38: 765-773. 10.1016/0022-1910(92)90029-D.
Article
Google Scholar
Fukatsu T, Ishikawa H: Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol. 1996, 26: 383-388. 10.1016/0965-1748(95)00105-0.
Article
CAS
PubMed
Google Scholar
Fukatsu T, Aoki S, Kurosu U, Ishikawa H: Phylogeny of Cerataphidini aphids revealed by their symbiotic microorganisms and basic structure of their galls: Implications for host-symbiont coevolution and evolution of sterile soldier castes. Zoolog Sci. 1994, 11: 613-623.
Google Scholar
Bush SE, Clayton DH: The role of body size in host specificity: Reciprocal transfer experiments with feather lice. Evolution. 2006, 60: 2158-2167.
Article
PubMed
Google Scholar
Huigens ME, de Almeida RP, Boons PA, Luck RF, Stouthamer R: Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc R Soc London, Ser B. 2004, 271: 509-515. 10.1098/rspb.2003.2640.
Article
CAS
Google Scholar
Jaenike J, Polak M, Fiskin A, Helou M, Minhas M: Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett. 2007, 3: 23-25. 10.1098/rsbl.2006.0577.
Article
CAS
PubMed Central
PubMed
Google Scholar
Moran NA, Dunbar H: Sexual acquisition of beneficial symbionts in aphids. PNAS. 2006, 103: 12803-12806. 10.1073/pnas.0605772103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Werren JH, Zhang W, Guo LR: Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proc R Soc London, Ser B. 1995, 261: 55-63. 10.1098/rspb.1995.0117.
Article
CAS
Google Scholar
Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA: Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003, 12: 1061-1075. 10.1046/j.1365-294X.2003.01780.x.
Article
CAS
PubMed
Google Scholar
Weinert LA, Werren JH, Aebi A, Stone GN, Jiggins FM: Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009, 7: 6-10.1186/1741-7007-7-6.
Article
PubMed Central
PubMed
Google Scholar
Dale C, Maudlin I: Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 1999, 49: 267-275. 10.1099/00207713-49-1-267.
Article
CAS
PubMed
Google Scholar
Heddi A, Nardon P: Sitophilus oryzae L: a model for intracellular symbiosis in the Dryophthoridae weevils (Coleoptera). Symbiosis. 2005, 39: 1-11.
Google Scholar
Novakova E, Hypsa V: A new Sodalis lineage from blood sucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol Lett. 2007, 269: 131-135. 10.1111/j.1574-6968.2006.00620.x.
Article
CAS
PubMed
Google Scholar
Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T: “Candidatus Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol. 2010, 76: 275-282. 10.1128/AEM.02154-09.
Article
CAS
PubMed Central
PubMed
Google Scholar
Grunwald S, Pilhofer M, Höll W: Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleptera: Cerambycidae]. Syst Appl Microbiol. 2010, 33: 25-34. 10.1016/j.syapm.2009.10.002.
Article
CAS
PubMed
Google Scholar
Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T: Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug. Appl Environ Microbiol. 2010, 76: 3486-3494. 10.1128/AEM.00421-10.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kaiwa N, Hosokawa T, Kikuchi Y, Nikoh N, Meng XY, Kimura N, Ito M, Fukatsu T: Bacterial symbionts of the giant jewel stinkbug Eucoryssus grandis (Hemiptera: Scutelleridae). Zool Sci. 2011, 28: 169-174. 10.2108/zsj.28.169.
Article
PubMed
Google Scholar
Toju H, Fukatsu T: Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol. 2011, 20: 853-868. 10.1111/j.1365-294X.2010.04980.x.
Article
PubMed
Google Scholar
Moran NA: Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. PNAS. 1996, 93: 2873-2878. 10.1073/pnas.93.7.2873.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wernegreen JJ: Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet. 2002, 3: 850-861. 10.1038/nrg931.
Article
CAS
PubMed
Google Scholar
Clayton DH, Drown DM: Critical evaluation of five methods for quantifying chewing lice (Insecta: Phthiraptera). J Parasitol. 2001, 87: 1291-1300.
Article
CAS
PubMed
Google Scholar
Dale C, Plague GR, Wang B, Ochman H, Moran NA: Type III secretion systems and the evolution of mutualistic endosymbiosis. PNAS. 2002, 99: 12397-12402. 10.1073/pnas.182213299.
Article
CAS
PubMed Central
PubMed
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004, 5: 113-10.1186/1471-2105-5-113.
Article
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52: 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17: 754-755. 10.1093/bioinformatics/17.8.754.
Article
CAS
PubMed
Google Scholar
Farris JS, Källersjö M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics. 1994, 10: 315-319. 10.1111/j.1096-0031.1994.tb00181.x.
Article
Google Scholar
Farris JS, Källersjö M, Kluge AG, Bult C: Constructing a significance test for incongruence. Syst Biol. 1995, 44: 570-572.
Article
Google Scholar
Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods), Version 4. 2003, Sunderland, Massachusetts: Sinauer Associates,
Google Scholar
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, Pande N, Shang Z, Yu N, Gutell RR: The Comparative RNA web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinforma. 2002, 3: 2-10.1186/1471-2105-3-2.
Article
Google Scholar
Sakurai M, Koga R, Tsuchida T, Meng XY, Fukatsu T: Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl Environ Microbiol. 2005, 71: 4069-4075. 10.1128/AEM.71.7.4069-4075.2005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Page RDM: Component analysis: a valiant failure?. Cladistics. 1990, 6: 119-136. 10.1111/j.1096-0031.1990.tb00532.x.
Article
Google Scholar
Page RDM: Temporal congruence and cladistic analysis of biogeography and cospeciation. Syst Zool. 1990, 39: 205-226. 10.2307/2992182.
Article
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
CAS
PubMed Central
PubMed
Google Scholar