Zhang M, Mileykovskaya E, Dowhan W: Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem. 2005, 280 (33): 29403-29408. 10.1074/jbc.M504955200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Joshi AS, Zhou JM, Gohil VM, Chen SL, Greenberg ML: Cellular functions of cardiolipin in yeast. Biochimica Et Biophysica Acta-Molecular Cell Research. 2009, 1793 (1): 212-218. 10.1016/j.bbamcr.2008.07.024.
Article
CAS
Google Scholar
Koshkin V, Greenberg ML: Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J. 2002, 364: 317-322.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jiang F, Ryan MT, Schlame M, Zhao M, Gu ZM, Klingenberg M, Pfanner N, Greenberg ML: Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem. 2000, 275 (29): 22387-22394. 10.1074/jbc.M909868199.
Article
PubMed
CAS
Google Scholar
Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C, Byrne B, Cecchini G, Iwata S: Architecture of succinate dehydrogenase and reactive oxygen species generation. Science. 2003, 299 (5607): 700-704. 10.1126/science.1079605.
Article
PubMed
CAS
Google Scholar
Jormakka M, Byrne B, Iwata S: Formate dehydrogenase--a versatile enzyme in changing environments. Curr Opin Struct Biol. 2003, 13 (4): 418-423. 10.1016/S0959-440X(03)00098-8.
Article
PubMed
CAS
Google Scholar
Arias-Cartin R, Grimaldi S, Pommier J, Lanciano P, Schaefer C, Arnoux P, Giordano G, Guigliarelli B, Magalon A: Cardiolipin-based respiratory complex activation in bacteria. Proc Natl Acad Sci USA. 2011, 108 (19): 7781-7786. 10.1073/pnas.1010427108.
Article
PubMed
CAS
PubMed Central
Google Scholar
McAuley KE, Fyfe PK, Ridge JP, Isaacs NW, Cogdell RJ, Jones MR: Structural details of an interaction between cardiolipin and an integral membrane protein. Proc Natl Acad Sci USA. 1999, 96 (26): 14706-14711. 10.1073/pnas.96.26.14706.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mileykovskaya E, Zhang M, Dowhan W: Cardiolipin in energy transducing membranes. Biochem Mosc. 2005, 70 (2): 154-158. 10.1007/s10541-005-0095-2.
Article
CAS
Google Scholar
Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM: Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol Microbiol. 2007, 64 (6): 1455-1465. 10.1111/j.1365-2958.2007.05727.x.
Article
PubMed
CAS
Google Scholar
Gold VA, Robson A, Bao H, Romantsov T, Duong F, Collinson I: The action of cardiolipin on the bacterial translocon. Proc Natl Acad Sci USA. 2010, 107 (22): 10044-10049. 10.1073/pnas.0914680107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Corcelli A: The cardiolipin analogues of Archaea. Biochimica et Biophysica Acta-Biomembranes. 2009, 1788 (10): 2101-2106. 10.1016/j.bbamem.2009.05.010.
Article
CAS
Google Scholar
Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H: A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea. 2005, 1 (6): 399-410. 10.1155/2005/452563.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nowicki M, Muller F, Frentzen M: Cardiolipin synthase of Arabidopsis thalian. FEBS Lett. 2005, 579 (10): 2161-2165. 10.1016/j.febslet.2005.03.007.
Article
PubMed
CAS
Google Scholar
Houtkooper RH, Akbari H, van Lenthe H, Kulik W, Wanders RJA, Frentzen M, Vaz FM: Identification and characterization of human cardiolipin synthase. FEBS Lett. 2006, 580 (13): 3059-3064. 10.1016/j.febslet.2006.04.054.
Article
PubMed
CAS
Google Scholar
Schlame M: Thematic review series: glycerolipids--cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res. 2008, 49 (8): 1607-1620. 10.1194/jlr.R700018-JLR200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R: Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in Yeast. J Biol Chem. 2009, 284 (17): 11572-11578.
Article
PubMed
CAS
PubMed Central
Google Scholar
Malhotra A, Edelman-Novemsky I, Xu Y, Plesken H, Ma JP, Schlame M, Ren MD: Role of calcium-independent phospholipase A(2) in the pathogenesis of Barth syndrome. Proc Natl Acad Sci USA. 2009, 106 (7): 2337-2341. 10.1073/pnas.0811224106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zachman DK, Chicco AJ, McCune SA, Murphy RC, Moore RL, Sparagna GC: The role of calcium-independent phospholipase A(2) in cardiolipin remodeling in the spontaneously hypertensive heart failure rat heart. J Lipid Res. 2010, 51 (3): 525-534. 10.1194/jlr.M000646.
Article
PubMed
CAS
PubMed Central
Google Scholar
Gu ZM, Valianpour F, Chen SL, Vaz FM, Hakkaart GA, Wanders RJA, Greenberg ML: Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol. 2004, 51 (1): 149-158.
Article
PubMed
CAS
Google Scholar
Cao JS, Liu YF, Lockwood J, Burn P, Shi YG: A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA: lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem. 2004, 279 (30): 31727-31734. 10.1074/jbc.M402930200.
Article
PubMed
CAS
Google Scholar
Kutschera U, Niklas KJ: Endosymbiosis, cell evolution, and speciation. Theory Biosci. 2005, 124 (1): 1-24. 10.1016/j.thbio.2005.04.001.
Article
PubMed
CAS
Google Scholar
de Andrade Rosa I, Einicker-Lamas M, Roney Bernardo R, Previatto LM, Mohana-Borges R, Morgado-Diaz JA, Benchimol M: Cardiolipin in hydrogenosomes: evidence of symbiotic origin. Eukaryot Cell. 2006, 5 (4): 784-787. 10.1128/EC.5.4.784-787.2006.
Article
PubMed
PubMed Central
Google Scholar
Rosa ID, Einicker-Lamas M, Bernardo RR, Benchimol M: Cardiolipin, a lipid found in mitochondria, hydrogenosomes and bacteria was not detected in Giardia lambli. Exp Parasitol. 2008, 120 (3): 215-220. 10.1016/j.exppara.2008.07.009.
Article
CAS
Google Scholar
Guschina IA, Harris KM, Maskrey B, Goldberg B, Lloyd D, Harwood JL: The microaerophilic flagellate, Trichomonas vaginali, contains unusual acyl lipids but no detectable cardiolipin. J Eukaryot Microbiol. 2009, 56 (1): 52-57. 10.1111/j.1550-7408.2008.00365.x.
Article
PubMed
CAS
Google Scholar
Benchimol M: Hydrogenosomes under microscopy. Tissue Cell. 2009, 41 (3): 151-168. 10.1016/j.tice.2009.01.001.
Article
PubMed
CAS
Google Scholar
Gillin FD, Reiner DS, McCaffery JM: Cell biology of the primitive eukaryote Giardia lamblia. Annu Rev Microbiol. 1996, 50: 679-705. 10.1146/annurev.micro.50.1.679.
Article
PubMed
CAS
Google Scholar
Cavalier-Smith T: Eukaryotes with no mitochondria. Nature. 1987, 326 (6111): 332-333. 10.1038/326332a0.
Article
PubMed
CAS
Google Scholar
Cavalier-Smith T: Archaebacteria and Archezoa. Nature. 1989, 339 (6220): 100-101. 10.1038/339100a0.
Article
Google Scholar
Katayama K, Sakurai I, Wada H: Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett. 2004, 577 (1-2): 193-198. 10.1016/j.febslet.2004.10.009.
Article
PubMed
CAS
Google Scholar
Sandoval-Calderon M, Geiger O, Guan ZQ, Barona-Gomez F, Sohlenkamp C: A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolo and in most Actinobacteria. J Biol Chem. 2009, 284 (26): 17383-17390. 10.1074/jbc.M109.006072.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tropp BE: Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta. 1997, 1348 (1-2): 192-200.
Article
PubMed
CAS
Google Scholar
Koprivnjak T, Zhang D, Ernst CM, Peschel A, Nauseef WM, Weiss JP: Characterization of Staphylococcus aureus cardiolipin synthases 1 and 2 and their contribution to accumulation of cardiolipin in stationary phase and within phagocytes. J Bacteriol. 2011, 193 (16): 4134-4142. 10.1128/JB.00288-11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tanaka H, Minakami R, Kanaya H, Sumimoto H: Catalytic residues of group VIB calcium-independent phospholipase A2 (iPLA2gamma). Biochem Biophys Res Commun. 2004, 320 (4): 1284-1290. 10.1016/j.bbrc.2004.05.225.
Article
PubMed
CAS
Google Scholar
Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature. 2006, 440 (7084): 623-630. 10.1038/nature04546.
Article
PubMed
CAS
Google Scholar
Esser C, Martin W, Dagan T: The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett. 2007, 3 (2): 180-184. 10.1098/rsbl.2006.0582.
Article
PubMed
CAS
PubMed Central
Google Scholar
Richards TA, van der Giezen M: Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes. Mol Biol Evol. 2006, 23 (7): 1341-1344. 10.1093/molbev/msl001.
Article
PubMed
CAS
Google Scholar
Lykidis A: Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res. 2007, 46 (3-4): 171-199. 10.1016/j.plipres.2007.03.003.
Article
PubMed
CAS
Google Scholar
Weeks G, Herring FG: The lipid composition and membrane fluidity of Dictyostelium discoideum plasma membranes at various stages during differentiation. J Lipid Res. 1980, 21 (6): 681-686.
PubMed
CAS
Google Scholar
Adosraku RK, Smith JD, Nicolaou A, Gibbons WA: Tetrahymena thermophila: analysis of phospholipids and phosphonolipids by high-field 1H-NMR. Biochim Biophys Acta. 1996, 1299 (2): 167-174.
Article
PubMed
Google Scholar
Andrews D, Nelson DL: Biochemical studies of the excitable membrane of Paramecium tetraurelia. II. Phospholipids of ciliary and other membranes. Biochim Biophys Acta. 1979, 550 (2): 174-187. 10.1016/0005-2736(79)90205-0.
Article
PubMed
CAS
Google Scholar
Soudant P, Chu FL, Marty Y: Lipid class composition of the protozoan Perkinsus marinus, an oyster parasite, and its metabolism of a fluorescent phosphatidylcholine analog. Lipids. 2000, 35 (12): 1387-1395. 10.1007/s11745-000-0656-1.
Article
PubMed
CAS
Google Scholar
Oliveira MM, Timm SL, Costa SC: Lipid composition of Trypanosoma cruzi. Comp Biochem Physiol B. 1977, 58 (2): 195-199. 10.1016/0305-0491(77)90109-2.
PubMed
CAS
Google Scholar
Zillig W: Comparative biochemistry of Archaea and Bacteria. Curr Opin Genet Dev. 1991, 1 (4): 544-551. 10.1016/S0959-437X(05)80206-0.
Article
PubMed
CAS
Google Scholar
Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol. 2002, 52: 297-354.
Article
PubMed
CAS
Google Scholar
Hartman H, Fedorov A: The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA. 2002, 99 (3): 1420-1425. 10.1073/pnas.032658599.
Article
PubMed
CAS
PubMed Central
Google Scholar
Horiike T, Hamada K, Kanaya S, Shinozawa T: Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol. 2001, 3 (2): 210-214. 10.1038/35055129.
Article
PubMed
CAS
Google Scholar
Lake JA, Rivera MC: Was the nucleus the first endosymbiont?. Proc Natl Acad Sci USA. 1994, 91 (8): 2880-2881. 10.1073/pnas.91.8.2880.
Article
PubMed
CAS
PubMed Central
Google Scholar
El Alaoui H, Bata J, Bauchart D, Dore JC, Vivares CP: Lipids of three microsporidian species and multivariate analysis of the host-parasite relationship. J Parasitol. 2001, 87 (3): 554-559.
PubMed
CAS
Google Scholar
Haines TH: A new look at Cardiolipin. Biochim Biophys Acta. 2009, 1788 (10): 1997-2002. 10.1016/j.bbamem.2009.09.008.
Article
PubMed
CAS
Google Scholar
Jakovcic S, Getz GS, Rabinowitz M, Jakob H, Swift H: Cardiolipin content of wild type and mutant yeasts in relation to mitochondrial function and development. J Cell Biol. 1971, 48 (3): 490-502. 10.1083/jcb.48.3.490.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pereto J, Lopez-Garcia P, Moreira D: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 2004, 29 (9): 469-477. 10.1016/j.tibs.2004.07.002.
Article
PubMed
CAS
Google Scholar
Jenkins CM, Han X, Mancuso DJ, Gross RW: Identification of calcium-independent phospholipase A2 (iPLA2) beta, and not iPLA2gamma, as the mediator of arginine vasopressin-induced arachidonic acid release in A-10 smooth muscle cells. J Biol Chem. 2002, 277 (36): 32807-32814. 10.1074/jbc.M202568200.
Article
PubMed
CAS
Google Scholar
Serfontein J, Nisbet RE, Howe CJ, de Vries PJ: Evolution of the TSC1/TSC2-TOR signaling pathway. Sci Signal. 2010, 3 (128): ra49-10.1126/scisignal.2000803.
Article
PubMed
Google Scholar
Stechmann A, Cavalier-Smith T: Rooting the eukaryote tree by using a derived gene fusion. Science. 2002, 297 (5578): 89-91. 10.1126/science.1071196.
Article
PubMed
CAS
Google Scholar
Burki F, Shalchian-Tabrizi K, Pawlowski J: Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes. Biol Lett. 2008, 4 (4): 366-369. 10.1098/rsbl.2008.0224.
Article
PubMed
PubMed Central
Google Scholar
Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AG, Roger AJ: Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci USA. 2009, 106 (10): 3859-3864. 10.1073/pnas.0807880106.
Article
PubMed
CAS
PubMed Central
Google Scholar
Roger AJ: Reconstructing early events in eukaryotic evolution. Am Nat. 1999, 154: S146-S163. 10.1086/303290.
Article
PubMed
Google Scholar
Roger AJ, Clark CG, Doolittle WF: A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginali. Proc Natl Acad Sci USA. 1996, 93 (25): 14618-14622. 10.1073/pnas.93.25.14618.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tovar J, Fischer A, Clark CG: The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol. 1999, 32 (5): 1013-1021. 10.1046/j.1365-2958.1999.01414.x.
Article
PubMed
CAS
Google Scholar
Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM: Mitochondrial remnant organelles of Giardia function in ironsulphur protein maturation. Nature. 2003, 426 (6963): 172-176. 10.1038/nature01945.
Article
PubMed
CAS
Google Scholar
Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM: Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature. 2004, 432 (7017): 618-622. 10.1038/nature03149.
Article
PubMed
CAS
Google Scholar
Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004, 5: 113-10.1186/1471-2105-5-113.
Article
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP: FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010, 5 (3): e9490-10.1371/journal.pone.0009490.
Article
PubMed
PubMed Central
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
CAS
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18 (5): 691-699. 10.1093/oxfordjournals.molbev.a003851.
Article
PubMed
CAS
Google Scholar
Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol. 2008, 57 (5): 758-771. 10.1080/10635150802429642.
Article
PubMed
Google Scholar
Shimodaira H, Hasegawa M: CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001, 17 (12): 1246-1247. 10.1093/bioinformatics/17.12.1246.
Article
PubMed
CAS
Google Scholar