Mayer MP, Bukau B: Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005, 62 (6): 670-684. 10.1007/s00018-004-4464-6.
Article
PubMed
CAS
PubMed Central
Google Scholar
Young JC: Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol. 2010, 88 (2): 291-300. 10.1139/O09-175.
Article
PubMed
CAS
Google Scholar
Morano KA: New tricks for an old dog: the evolving world of Hsp70. Ann N Y Acad Sci. 2007, 1113: 1-14. 10.1196/annals.1391.018.
Article
PubMed
CAS
Google Scholar
Kampinga HH, Craig EA: The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010, 11 (8): 579-592. 10.1038/nrm2941.
Article
PubMed
CAS
PubMed Central
Google Scholar
Harrison C: GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones. 2003, 8 (3): 218-224. 10.1379/1466-1268(2003)008<0218:GANEFF>2.0.CO;2.
Article
PubMed
CAS
PubMed Central
Google Scholar
Laloraya S, Gambill BD, Craig EA: A role for a eukaryotic GrpE-related protein, Mge1p, in protein translocation. Proc Natl Acad Sci USA. 1994, 91 (14): 6481-6485. 10.1073/pnas.91.14.6481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman FA: The chloroplastic GrpE homolog of Chlamydomonas: two isoforms generated by differential splicing. Plant Cell. 2001, 13 (12): 2823-2839.
Article
PubMed
CAS
PubMed Central
Google Scholar
Alberti S, Esser C, Hohfeld J: BAG-1–a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones. 2003, 8 (3): 225-231. 10.1379/1466-1268(2003)008<0225:BNEFOH>2.0.CO;2.
Article
PubMed
PubMed Central
Google Scholar
Craig EA, Huang P, Aron R, Andrew A: The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol. 2006, 156: 1-21.
PubMed
CAS
Google Scholar
Liberek K, Marszalek J, Ang D, Georgopoulos C, Zylicz M: Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci USA. 1991, 88 (7): 2874-2878. 10.1073/pnas.88.7.2874.
Article
PubMed
CAS
PubMed Central
Google Scholar
Walsh P, Bursac D, Law YC, Cyr D, Lithgow T: The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 2004, 5 (6): 567-571. 10.1038/sj.embor.7400172.
Article
PubMed
CAS
PubMed Central
Google Scholar
Qiu XB, Shao YM, Miao S, Wang L: The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci. 2006, 63 (22): 2560-2570. 10.1007/s00018-006-6192-6.
Article
PubMed
CAS
Google Scholar
Boorstein WR, Ziegelhoffer T, Craig EA: Molecular evolution of the HSP70 multigene family. J Mol Evol. 1994, 38 (1): 1-17.
Article
PubMed
CAS
Google Scholar
Renner T, Waters ER: Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones. 2007, 12 (2): 172-185. 10.1379/CSC-230R1.1.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nordhues A, Miller SM, Muhlhaus T, Schroda M: New insights into the roles of molecular chaperones in Chlamydomonas and Volvox. Int Rev Cell Mol Biol. 2010, 285: 75-113.
Article
PubMed
CAS
Google Scholar
Macario AJ, Brocchieri L, Shenoy AR, Conway de Macario E: Evolution of a protein-folding machine: genomic and evolutionary analyses reveal three lineages of the archaeal hsp70(dnaK) gene. J Mol Evol. 2006, 63 (1): 74-86. 10.1007/s00239-005-6207-1.
Article
PubMed
CAS
Google Scholar
Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P: Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol. 1999, 181 (2): 434-443.
PubMed
CAS
PubMed Central
Google Scholar
Lopez-Garcia P, Brochier C, Moreira D, Rodriguez-Valera F: Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. Environ Microbiol. 2004, 6 (1): 19-34.
Article
PubMed
CAS
Google Scholar
DeLong EF: Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992, 89 (12): 5685-5689. 10.1073/pnas.89.12.5685.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fuhrman JA, McCallum K, Davis AA: Novel major archaebacterial group from marine plankton. Nature. 1992, 356 (6365): 148-149. 10.1038/356148a0.
Article
PubMed
CAS
Google Scholar
Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P: Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008, 6 (3): 245-252. 10.1038/nrmicro1852.
Article
PubMed
CAS
Google Scholar
Brochier-Armanet C, Gribaldo S, Forterre P: Spotlight on the Thaumarchaeota. ISME J. 2012, 6 (2): 227-230. 10.1038/ismej.2011.145.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pester M, Schleper C, Wagner M: The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol. 2011, 14 (3): 300-306. 10.1016/j.mib.2011.04.007.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dorn KV, Willmund F, Schwarz C, Henselmann C, Pohl T, Hess B, Veyel D, Usadel B, Friedrich T, Nickelsen J, et al: Chloroplast DnaJ-like proteins 3 and 4 (CDJ3/4) from Chlamydomonas reinhardtii contain redox-active Fe-S clusters and interact with stromal HSP70B. Biochem J. 2010, 427 (2): 205-215. 10.1042/BJ20091412.
Article
PubMed
CAS
Google Scholar
Brochier-Armanet C, Forterre P, Gribaldo S: Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol. 2011, 14 (3): 274-281. 10.1016/j.mib.2011.04.015.
Article
PubMed
Google Scholar
Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, et al: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005, 52 (5): 399-451. 10.1111/j.1550-7408.2005.00053.x.
Article
PubMed
Google Scholar
Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, Preston C, de la Torre J, Richardson PM, DeLong EF: Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci USA. 2006, 103 (48): 18296-18301. 10.1073/pnas.0608549103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PS, Chan PP, Gollabgir A, et al: Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA. 2010, 107 (19): 8818-8823. 10.1073/pnas.0913533107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR: Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis. PLoS One. 2011, 6 (2): e16626-10.1371/journal.pone.0016626.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim BK, Jung MY, Yu DS, Park SJ, Oh TK, Rhee SK, Kim JF: Genome sequence of an ammonia-oxidizing soil archaeon, "Candidatus Nitrosoarchaeum koreensis" MY1. J Bacteriol. 2011, 193 (19): 5539-5540. 10.1128/JB.05717-11.
Article
PubMed
CAS
PubMed Central
Google Scholar
Spang A, Poehlein A, Offre P, Zumbragel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, et al: The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental microbiology. 2012
Google Scholar
Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, et al: Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 2011, 39 (8): 3204-3223. 10.1093/nar/gkq1228.
Article
PubMed
CAS
PubMed Central
Google Scholar
Keeling PJ: The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci. 2010, 365 (1541): 729-748. 10.1098/rstb.2009.0103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Deschamps P, Moreira D: Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol Biol Evol. 2009, 26 (12): 2745-2753. 10.1093/molbev/msp189.
Article
PubMed
CAS
Google Scholar
Criscuolo A, Gribaldo S: Large-scale phylogenomic analyses indicate a deep origin of primary plastids within cyanobacteria. Mol Biol Evol. 2011, 28 (11): 3019-3032. 10.1093/molbev/msr108.
Article
PubMed
CAS
Google Scholar
Geissinger O, Herlemann DP, Morschel E, Maier UG, Brune A: The ultramicrobacterium "Elusimicrobium minutum" gen. nov., sp. nov., the first cultivated representative of the termite group 1 phylum. Appl Environ Microbiol. 2009, 75 (9): 2831-2840. 10.1128/AEM.02697-08.
Article
PubMed
CAS
PubMed Central
Google Scholar
Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 2010, 18 (8): 331-340. 10.1016/j.tim.2010.06.003.
Article
PubMed
CAS
Google Scholar
Gupta RS: What are archaebacteria: life's third domain or monoderm prokaryotes related to Gram-positive bacteria? A new proposal for the classification of prokaryotic organisms. Mol Microbiol. 1998, 229 (3): 695-708.
Article
Google Scholar
Griffiths E, Gupta RS: The use of signature sequences in different proteins to determine the relative branching order of bacterial divisions: evidence that Fibrobacter diverged at a similar time to Chlamydia and the Cytophaga-Flavobacterium-Bacteroides division. Microbiology. 2001, 147 (Pt 9): 2611-2622.
Article
PubMed
CAS
Google Scholar
Gupta RS: Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek. 2011, 100 (2): 171-182. 10.1007/s10482-011-9616-8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Philippe H, Budin K, Moreira D: Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol Microbiol. 1999, 31 (3): 1007-1009. 10.1046/j.1365-2958.1999.01185.x.
Article
PubMed
CAS
Google Scholar
Gribaldo S, Brochier-Armanet C: The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci. 2006, 361 (1470): 1007-1022. 10.1098/rstb.2006.1841.
Article
PubMed
CAS
PubMed Central
Google Scholar
Groussin M, Gouy M: Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in archaea. Mol Biol Evol. 2011, 28 (9): 2661-2674. 10.1093/molbev/msr098.
Article
PubMed
CAS
Google Scholar
Puigbo P, Pasamontes A, Garcia-Vallve S: Gaining and losing the thermophilic adaptation in prokaryotes. Trends in genetics: TIG. 2008, 24 (1): 10-14. 10.1016/j.tig.2007.10.005.
Article
PubMed
CAS
Google Scholar
Huang J, Gogarten JP: Ancient horizontal gene transfer can benefit phylogenetic reconstruction. Trends in genetics: TIG. 2006, 22 (7): 361-366. 10.1016/j.tig.2006.05.004.
Article
PubMed
CAS
Google Scholar
Douzery EJ, Snell EA, Bapteste E, Delsuc F, Philippe H: The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?. Proc Natl Acad Sci USA. 2004, 101 (43): 15386-15391. 10.1073/pnas.0403984101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30 (14): 3059-3066. 10.1093/nar/gkf436.
Article
PubMed
CAS
PubMed Central
Google Scholar
Do CB, Mahabhashyam MS, Brudno M, Batzoglou S: ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res. 2005, 15 (2): 330-340. 10.1101/gr.2821705.
Article
PubMed
CAS
PubMed Central
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32 (5): 1792-1797. 10.1093/nar/gkh340.
Article
PubMed
CAS
PubMed Central
Google Scholar
Philippe H: MUST, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res. 1993, 21 (22): 5264-5272. 10.1093/nar/21.22.5264.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 2004, 4: 18-10.1186/1471-2148-4-18.
Article
PubMed
PubMed Central
Google Scholar
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Lartillot N, Lepage T, Blanquart S: PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics. 2009, 25 (17): 2286-2288. 10.1093/bioinformatics/btp368.
Article
PubMed
CAS
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
CAS
Google Scholar
Shimodaira H: An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002, 51 (3): 492-508. 10.1080/10635150290069913.
Article
PubMed
Google Scholar