Dorn R, Krauss V, Reuter G, Saumweber H: The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proceedings of the National Academy of Sciences of the United States of America. 1993, 90 (23): 11376-11380. 10.1073/pnas.90.23.11376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones RS, Gelbart WM: The Drosophila Polycomb-group gene Enhancer of zeste contains a region with sequence similarity to trithorax. Molecular and Cellular Biology. 1993, 13 (10): 6357-6366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G: The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO Journal. 1994, 13 (16): 3822-3831.
CAS
PubMed
PubMed Central
Google Scholar
Stassen MJ, Bailey D, Nelson S, Chinwalla V, Harte PJ: The Drosophila trithorax proteins contain a novel variant of the nuclear receptor type DNA binding domain and an ancient conserved motif found in other chromosomal proteins. Mechanisms of Development. 1995, 52 (2-3): 209-223. 10.1016/0925-4773(95)00402-M.
Article
CAS
PubMed
Google Scholar
Alvarez-Venegas R, Sadder M, Tikhonov A, Avramova Z: Origin of the Bacterial SET Domain Genes: Vertical or Horizontal?. Molecular Biology and Evolution. 2006, 24 (2): 482-97. 10.1093/molbev/msl184.
Article
PubMed
Google Scholar
Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB: The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Research. 2001, 29 (21): 4319-4333. 10.1093/nar/29.21.4319.
Article
CAS
PubMed
PubMed Central
Google Scholar
Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM: Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant Physiology. 2003, 132 (2): 907-925. 10.1104/pp.102.013722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC: Plant SET domain-containing proteins: structure, function and regulation. Biochimica et Biophysica Acta. 2007, 1769 (5-6): 316-329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenuwein T, Allis CD: Translating the histone code. Science. 2001, 293 (5532): 1074-1080. 10.1126/science.1063127.
Article
CAS
PubMed
Google Scholar
Ying Z, Mulligan RM, Janney N, Houtz RL: Rubisco small and large subunit N-methyltransferases. Bi- and mono-functional methyltransferases that methylate the small and large subunits of Rubisco. Journal of Biological Chemistry. 1999, 274 (51): 36750-36756. 10.1074/jbc.274.51.36750.
Article
CAS
PubMed
Google Scholar
Zhao Z, Shen WH: Plants contain a high number of proteins showing sequence similarity to the animal SUV39H family of histone methyltransferases. Annals of the New York Academy of Sciences. 2004, 1030: 661-669. 10.1196/annals.1329.077.
Article
CAS
PubMed
Google Scholar
Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE, Reuter G, Aalen RB: The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Research. 2006, 34 (19): 5461-5470. 10.1093/nar/gkl687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson JP, Lindroth AM, Cao X, Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature. 2002, 416 (6880): 556-560. 10.1038/nature731.
Article
CAS
PubMed
Google Scholar
Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma. 2004, 112 (6): 308-315. 10.1007/s00412-004-0275-7.
Article
CAS
PubMed
Google Scholar
Jasencakova Z, Soppe WJ, Meister A, Gernand D, Turner BM, Schubert I: Histone modifications in Arabidopsis- high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant Journal. 2003, 33 (3): 471-480. 10.1046/j.1365-313X.2003.01638.x.
Article
CAS
PubMed
Google Scholar
Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G: Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO Journal. 2005, 24 (7): 1418-1429. 10.1038/sj.emboj.7600604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ebbs ML, Bender J: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006, 18 (5): 1166-1176. 10.1105/tpc.106.041400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution. 2001, 18 (5): 691-699.
Article
CAS
PubMed
Google Scholar
Kullback S, Leibler RA: On Information and Sufficiency. Annals of Mathematical Statistics. 1951, 22 (1): 79-86. 10.1214/aoms/1177729694.
Article
Google Scholar
Yang Z: Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution. 1993, 10 (6): 1396-1401.
CAS
PubMed
Google Scholar
Cao Y, Adachi J, Janke A, Paabo S, Hasegawa M: Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: instability of a tree based on a single gene. Journal of Molecular Evolution. 1994, 39 (5): 519-527. 10.1007/BF00173421.
Article
CAS
PubMed
Google Scholar
Englbrecht CC, Schoof H, Bohm S: Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics. 2004, 5 (1): 39-10.1186/1471-2164-5-39.
Article
PubMed
PubMed Central
Google Scholar
Reeves R, Nissen MS: The AT-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. Journal of Biological Chemistry. 1990, 265 (15): 8573-8582.
CAS
PubMed
Google Scholar
Friedmann M, Holth LT, Zoghbi HY, Reeves R: Organization, inducible-expression and chromosome localization of the human HMG-I(Y) nonhistone protein gene. Nucleic Acids Research. 1993, 21 (18): 4259-4267. 10.1093/nar/21.18.4259.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouhouche N, Syvanen M, Kado CI: The origin of prokaryotic C2H2 zinc finger regulators. Trends in Microbiology. 2000, 8 (2): 77-81. 10.1016/S0966-842X(99)01679-0.
Article
CAS
PubMed
Google Scholar
Wolfe SA, Nekludova L, Pabo CO: DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics and Biomolecular Structure. 2000, 29: 183-212. 10.1146/annurev.biophys.29.1.183.
Article
CAS
PubMed
Google Scholar
Doerks T, Copley RR, Schultz J, Ponting CP, Bork P: Systematic identification of novel protein domain families associated with nuclear functions. Genome Research. 2002, 12: 47-56. 10.1101/gr.203201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin H, Zhu W, Silva JC, Gu X, Buell CR: Intron gain and loss in segmentally duplicated genes in rice. Genome Biology. 2006, 7 (5): R41-10.1186/gb-2006-7-5-r41.
Article
PubMed
PubMed Central
Google Scholar
Li WH, Gu Z, Wang H, Nekrutenko A: Evolutionary analyses of the human genome. Nature. 2001, 409 (6822): 847-849. 10.1038/35057039.
Article
CAS
PubMed
Google Scholar
Horan K, Lauricha J, Bailey-Serres J, Raikhel N, Girke T: Genome cluster database. A sequence family analysis platform for Arabidopsis and rice. Plant Physiology. 2005, 138 (1): 47-54. 10.1104/pp.104.059048.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudet N, Aubourg S, Toffano-Nioche C, Kreis M, Lecharny A: Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Research. 2001, 11 (12): 2101-2114. 10.1101/gr.200801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Research. 2002, 12 (7): 1048-1059. 10.1101/gr.174302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park KC, Kwon SJ, Kim PH, Bureau T, Kim NS: Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome. 2008, 51 (1): 30-40. 10.1139/G07-093.
Article
CAS
PubMed
Google Scholar
Fu H, Kim SY, Park WD: High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequences and the leader intron. Plant Cell. 1995, 7 (9): 1387-1394. 10.1105/tpc.7.9.1387.
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science. 2000, 290 (5494): 1151-1155. 10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Wattler S, Russ A, Evans M, Nehls M: A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members if the T-box family. Genomics. 1998, 48 (1): 24-33. 10.1006/geno.1997.5150.
Article
CAS
PubMed
Google Scholar
Trapp SC, Croteau RB: Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics. 2001, 158 (2): 811-832.
CAS
PubMed
PubMed Central
Google Scholar
Benovoy D, Drouin G: Processed pseudogenes, processed genes, and spontaneous mutations in the Arabidopsis genome. Journal of Molecular Evolution. 2006, 62 (5): 511-522. 10.1007/s00239-005-0045-z.
Article
CAS
PubMed
Google Scholar
Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S, Lu Z, Wong GK, Long M, Wang J: High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell. 2006, 18 (8): 1791-1802. 10.1105/tpc.106.041905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong H, Leebens-Mack J, Ni W, dePamphilis CW, Ma H: Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications. Molecular Biology and Evolution. 2004, 21 (1): 117-128. 10.1093/molbev/msh001.
Article
CAS
PubMed
Google Scholar
Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant Journal. 2007, 50 (5): 873-885. 10.1111/j.1365-313X.2007.03097.x.
Article
CAS
PubMed
Google Scholar
Graur D, Li W: Fundamentals of Molecular Evolution. 2000, Sunderland, MA: Sinauer Associates
Google Scholar
Shen WH: NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth. Plant Journal. 2001, 28 (4): 371-383. 10.1046/j.1365-313X.2001.01135.x.
Article
CAS
PubMed
Google Scholar
Fischer A, Hofmann I, Naumann K, Reuter G: Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. Journal of Plant Physiology. 2006, 163 (3): 358-368. 10.1016/j.jplph.2005.10.015.
Article
CAS
PubMed
Google Scholar
Ebbs ML, Bartee L, Bender J: H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Molecular and Cellular Biology. 2005, 25 (23): 10507-10515. 10.1128/MCB.25.23.10507-10515.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R, Antonescu V, Chan A, Cheung F, Quackenbush J: The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Research. 2005, D71-74. 33 Database
Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P: SMART 5: domains in the context of genomes and networks. Nucleic Acids Research. 2006, D257-260. 10.1093/nar/gkj079. 34 Database
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A: Pfam: clans, web tools and services. Nucleic Acids Research. 2006, D247-251. 10.1093/nar/gkj149. 34 Database
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research. 2006, W609-612. 10.1093/nar/gkl315. 34 Web Server
Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology. 2003, 52 (5): 696-704. 10.1080/10635150390235520.
Article
PubMed
Google Scholar
Kumar S, Tamura K, Nei M: MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics. 2004, 5 (2): 150-163. 10.1093/bib/5.2.150.
Article
CAS
PubMed
Google Scholar
Felsenstein J: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution. 1981, 17 (6): 368-376. 10.1007/BF01734359.
Article
CAS
PubMed
Google Scholar
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987, 4 (4): 406-425.
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21 (9): 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Nei M, Kumar S: Molecular Evolution and Phylogenetics. 2000, Oxford: Oxford University Press
Google Scholar
Wheelan SJ, Church DM, Ostell JM: Spidey: a tool for mRNA-to-genomic alignments. Genome Research. 2001, 11 (11): 1952-1957.
CAS
PubMed
PubMed Central
Google Scholar
Rogozin IB, Sverdlov AV, Babenko VN, Koonin EV: Analysis of evolution of exon-intron structure of eukaryotic genes. Briefings in Bioinformatics. 2005, 6 (2): 118-134. 10.1093/bib/6.2.118.
Article
CAS
PubMed
Google Scholar