Blankenship RE: Molecular Mechanisms of Photosynthesis. 2002, Blackwell Science, Oxford
Book
Google Scholar
Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzee LL, Beukes NJ: Dating the rise of atmospheric oxygen. Nature. 2004, 427 (6970): 117-120. 10.1038/nature02260.
Article
CAS
PubMed
Google Scholar
Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ: The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2005, 102 (32): 11131-11136. 10.1073/pnas.0504878102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomitani A, Knoll AH, Cavanaugh CM, Ohno T: The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2006, 103 (14): 5442-5447. 10.1073/pnas.0600999103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JF, Martin W: Evolutionary biology: Out of thin air. Nature. 2007, 445: 610-612. 10.1038/445610a.
Article
CAS
PubMed
Google Scholar
Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR: Reassessing the first appearance of eukaryotes and cyanobacteria. Nature. 2008, 455 (7216): 1101-U9. 10.1038/nature07381.
Article
CAS
PubMed
Google Scholar
Frei R, Gaucher C, Poulton SW, Canfield DE: Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature. 2009, 461 (7261): 250-U125. 10.1038/nature08266.
Article
CAS
PubMed
Google Scholar
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY: Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria. Journal Of General Microbiology. 1979, 111: 1-61.
Google Scholar
Castenholz RW: Bergey's Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototropic Bacteria: Cyanobacteria. 2001, Springer Verlag
Google Scholar
Bonner JT: The Origin of Multicellularity. Integr Biol. 1998, 1: 28-36.
Google Scholar
Solari C, Kessler J, Goldstein RE: Motility, mixing, and multicellularity. Genetic Programming and Evolvable Machines. 2007, 8: 115-129. 10.1007/s10710-007-9029-7.
Article
Google Scholar
Butterfield NJ: Modes of pre-Ediacaran multicellularity. Precambrian Research. 2009, 173 (1-4): 201-211. 10.1016/j.precamres.2009.01.008.
Article
CAS
Google Scholar
Giddings TJ, Staehelin LA: Observation of Mieroplasmodesmata in both Heterocyst-Forming and Non-Heterocyst Forming Filamentous Cyanobacteria by Freeze-Fracture Electron Microscopy. Archives of Microbiology. 1981, 129: 295-298. 10.1007/BF00414700.
Article
Google Scholar
Flores E, Herrero A, Wolk CP, Maldener I: Is the periplasm continuous in filamentous multicellular cyanobacteria?. Trends in Microbiology. 2006, 14: 439-443. 10.1016/j.tim.2006.08.007.
Article
CAS
PubMed
Google Scholar
Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, Adams DG: Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. European Molecular Biology Organization Journal. 2008, 27: 1299-1308.
Article
CAS
Google Scholar
Flores E, Herrero A: Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nature Reviews Microbiology. 2010, 8: 39-50. 10.1038/nrmicro2242.
Article
CAS
PubMed
Google Scholar
Bonner JT: The evolution of complexity by means of natural selection. 1988, Princeton University Press
Google Scholar
Hofmann HJ: Precambrian Microflora, Belcher Islands, Canada - Significance And Systematics. Journal Of Paleontology. 1976, 50 (6): 1040-1073.
Google Scholar
Amard B, Bertrand-Sarfati J: Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Research. 1997, 81 (3-4): 197-221. 10.1016/S0301-9268(96)00035-6.
Article
CAS
Google Scholar
Schopf JW: Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phanerozoic. PNAS. 1994, 91: 6735-6742. 10.1073/pnas.91.15.6735.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sergeev VN: The distribution of microfossil assemblages in Proterozoic rocks. Precambrian Research. 2009, 173 (1-4): 212-222. 10.1016/j.precamres.2009.04.002.
Article
CAS
Google Scholar
Walsh MM: Microfossils And Possible Microfossils From The Early Archean Onverwacht Group, Barberton Mountain Land, South-Africa. Precambrian Research. 1992, 54 (2-4): 271-293. 10.1016/0301-9268(92)90074-X.
Article
CAS
PubMed
Google Scholar
Tice MM, Lowe DR: Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature. 2004, 431: 549-552. 10.1038/nature02888.
Article
CAS
PubMed
Google Scholar
Schopf JW, Kudryavtsec AB, Czaja AD, Tripathi AB: Evidence of Archean life: Stromatolites and microfossils. Precambrian Research. 2006, 158: 141-155. 10.1016/j.precamres.2007.04.009.
Article
CAS
Google Scholar
Westall F, de Vries ST, Nijman W, Rouchon V, Orberger B, Pearson V, Watson J, Verchovsky A, Wright I, Rouzaud JN, Marchesini D, Severine A: The 3.466 Ga "Kitty's Gap Chert," an early Archean microbial ecosystem. GSA Special Papers. 2006, 405: 105-131.
Google Scholar
Wacey D: Early Life on Earth: A practical Guide. 2009, Springer
Book
Google Scholar
Schopf JW: Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of life. Science. 1993, 260: 640-646. 10.1126/science.260.5108.640.
Article
CAS
PubMed
Google Scholar
Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB: Evidence of archean life: Stromatolites and microfossils. Precambrian Research. 2007, 158 (3-4): 141-155. 10.1016/j.precamres.2007.04.009.
Article
CAS
Google Scholar
Brasier M, Green O, Lindsay J, Steele A: Earth's oldest (similar to 3.5 Ga) fossils and the 'Early Eden hypothesis': Questioning the evidence. Origins Of Life And Evolution Of The Biosphere. 2004, 34 (1-2): 257-269. 10.1023/B:ORIG.0000009845.62244.d3.
Article
PubMed
Google Scholar
Brasier M, McLoughlin N, Green O, Wacey D: A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R Soc B. 2006, 361: 887-902. 10.1098/rstb.2006.1835.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR: Evolutionary Relationships Among Cyanobacteria And Green Chloroplasts. Journal of Bacteriology. 1988, 170: 3584-3592.
CAS
PubMed
PubMed Central
Google Scholar
Honda D, Yokota A, Sugiyama J: Detection of seven major evolutionary lineages in cyanobacteria based on the 16 S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. Journal Of Molecular Evolution. 1999, 48 (6): 723-739. 10.1007/PL00006517.
Article
CAS
PubMed
Google Scholar
Turner S, Pryer KM, Miao VP, Palmer JD: Investigating deep phylogenetic relationships among cyanobacteria and plastids by small submit rRNA sequence analysis. Journal Of Eukaryotic Microbiology. 1999, 46 (4): 327-338. 10.1111/j.1550-7408.1999.tb04612.x.
Article
CAS
PubMed
Google Scholar
Ishida T, Watanabe MM, Sugiyama J, Yokota A: Evidence for polyphyletic origin of the members of the orders of Oscillatoriales and Pleurocapsales as determined by 16 S rDNA analysis. Fems Microbiology Letters. 2001, 201: 79-82. 10.1111/j.1574-6968.2001.tb10736.x.
Article
CAS
PubMed
Google Scholar
Garcia-Pichel F, Lopez-Cortes A, Nubel U: Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Applied And Environmental Microbiology. 2001, 67 (4): 1902-1910. 10.1128/AEM.67.4.1902-1910.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Litvaitis MK: A molecular test of cyanobacterial phylogeny: inferences from constraint analyses. Hydrobiologia. 2002, 468: 135-145. 10.1023/A:1015262621848.
Article
CAS
Google Scholar
Sanchez-Baracaldo P, Hayes PK, Blank CE: Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology. 2005, 3 (3): 145-165. 10.1111/j.1472-4669.2005.00050.x.
Article
CAS
Google Scholar
Swingley WD, Blankenship RE, Raymond J: Integrating markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families. Molecular Biology And Evolution. 2008, 25 (4): 643-654. 10.1093/molbev/msn034.
Article
CAS
PubMed
Google Scholar
Blank C, Sanchez-Baracaldo P: Timing of morphological and ecological innovations in the cyanobacteria - a key to understanding the rise in atmospheric oxygen. Geobiology. 2010, 8: 1-23. 10.1111/j.1472-4669.2009.00220.x.
Article
CAS
PubMed
Google Scholar
Doolittle WF: Phylogenetic classification and the universal tree. Science. 1999, 284 (5423): 2124-2128. 10.1126/science.284.5423.2124.
Article
CAS
PubMed
Google Scholar
Suchard MA: Stochastic models for horizontal gene transfer: Taking a random walk through tree space. Genetics. 2005, 170: 419-431. 10.1534/genetics.103.025692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamel L, Zhaxybayeva O, Gogarten JP: PentaPlot: A software tool for the illustration of genome mosaicism. BMC Bioinformatics. 2005, 6: 139-10.1186/1471-2105-6-139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW: The photosynthetic apparatus of Prochlorococcus: Insights through comparative genomics. Photosynthesis Research. 2001, 70: 53-71. 10.1023/A:1013835924610.
Article
CAS
PubMed
Google Scholar
Robertson BR, Tezuka N, Watanabe MM: Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16 S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. International Journal Of Systematic And Evolutionary Microbiology. 2001, 51: 861-871.
Article
CAS
PubMed
Google Scholar
Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW: Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003, 424 (6952): 1042-1047. 10.1038/nature01947.
Article
CAS
PubMed
Google Scholar
Ernst A, Becker S, Wollenzien UIA, Postius C: Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16 S rRNA and ITS-1 sequence analysis. Microbiology-Sgm. 2003, 149: 217-228. 10.1099/mic.0.25475-0.
Article
CAS
Google Scholar
Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F: Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biology. 2008, 9 (5): R90.-10.1186/gb-2008-9-5-r90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F: Ecological Genomics of Marine Picocyanobacteria. Microbiology And Molecular Biology Reviews. 2009, 73 (2): 249-10.1128/MMBR.00035-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brochier C, Bapteste E, Moreira D, Philippe H: Eubacterial phylogeny based on translational apparatus proteins. Trends in Genetics. 2002, 18: 1-4. 10.1016/S0168-9525(01)02522-7.
Article
CAS
PubMed
Google Scholar
Battistuzzi FU, Feijao A, Hedges SB: A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology. 2004, 4 (44): 1-14.
Google Scholar
Ciccarelli F, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science. 2006, 311: 1283-1286. 10.1126/science.1123061.
Article
CAS
PubMed
Google Scholar
Battistuzzi FU, Hedges SB: A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Mol Biol Evol. 2009, 26 (2): 335-343. 10.1093/molbev/msn247.
Article
CAS
PubMed
Google Scholar
Delwiche CF, Kuhsel M, Palmer JD: Phylogenetic Analysis Of Tufa Sequences Indicates A Cyanobacterial Origin Of All Plastids. Molecular Phylogenetics And Evolution. 1995, 4 (2): 110-128. 10.1006/mpev.1995.1012.
Article
CAS
PubMed
Google Scholar
Seo PS, Yokota A: The phylogenetic relationships of cyanobacteria inferred from 16SrRNA, gyrB, rpoC1 and rpoD1 gene sequences. The Journal of General and Applied Microbiology. 2003, 49: 191-203. 10.2323/jgam.49.191.
Article
CAS
PubMed
Google Scholar
Mangels D, Kruip J, Berry S, Rögner M, Boekema EJ, Koenig F: Photosystem I from the unusual cyanobacterium Gloeobacter violaceus. Photosynthesis Research. 2002, 72: 307-319. 10.1023/A:1019822316789.
Article
CAS
PubMed
Google Scholar
Nakamura Y, Kaneko T, Sato S, Mimuro M, Myashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S: Complete Genome Structure of Gloeobacter violaceus PCC7421 a Cyanobacterium that Lacks Thylakoids. DNA Research. 2003, 10: 137-145. 10.1093/dnares/10.4.137.
Article
CAS
PubMed
Google Scholar
Siefert JL, Fox GE: Phylogenetic mapping of bacterial morphology. Microbiology And Molecular Biology Reviews. 1998, 144: 2803-2808.
CAS
Google Scholar
Kremer B: Mat-forming coccoid cyanobacteria from early Silurian marine deposits of Sudetes, Poland. Acta Palaeontologica Polonica. 2006, 51: 143-154.
Google Scholar
Gugger MF, Hoffmann L: Polyphyly of true branching cyanobacteria (Stigonematales). International Journal of Systematic and Evolutionary Microbiology. 2004, 54: 349-357. 10.1099/ijs.0.02744-0.
Article
CAS
PubMed
Google Scholar
Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.71. 2009, [http://mesquiteproject.org]
Google Scholar
Erixon P, Svennblad B, Britton T, Oxelman B: Reliability of Bayesian Posterior Probabilities and Bootstrap Frequencies in Phylogenetics. Syst Biol. 2003, 52 (5): 665-673. 10.1080/10635150390235485.
Article
PubMed
Google Scholar
Huelsenbeck J, Rannala B: Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. Syst Biol. 2004, 53 (6): 904-913. 10.1080/10635150490522629.
Article
PubMed
Google Scholar
Alfaro ME, Holder MT: The Posterior and the Prior in Bayesian Phylogenetics. Annu Rev Ecol Evol Syst. 2006, 37: 19-42. 10.1146/annurev.ecolsys.37.091305.110021.
Article
Google Scholar
Stucken K, John U, Cembella A, Murillo AA, Soto-Liebe K, Fuentes-Valdés JJ, Friedel M, Plominsky A, Váquez AM, Glöckner G: The Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications. PLoS One. 2010, 5 (2): e9235.-10.1371/journal.pone.0009235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knoll AH, Javaux EJ, Hewitt D, Cohen P: Eukaryotic organisms in Proterozoic oceans. Phil Trans R Soc B. 2006, 361: 1023-1038. 10.1098/rstb.2006.1843.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buss LW: The Evolution of Individuality. 1987, Princeton University Press
Google Scholar
Maynard Smith J, Szathmáry E: The Major Transitions in Evolution. 1995, W.H. Freeman and Spektrum
Google Scholar
Buss LW: Slime molds, ascidians, and the utility of evolutionary theory. Proceedings Of The National Academy Of Sciences Of The United States Of America. 1999, 96 (16): 8801-8803. 10.1073/pnas.96.16.8801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michod RE: Darwinian Dynamics-Evolutionary Transitions in Fitness and Individuality. 1999, Princeton University Press
Google Scholar
Tuomi J: Genetic heterogeneity within organisms and the evolution of individuality. Journal Of Evolutionary Biology. 2004, 17 (6): 1182-1183. 10.1111/j.1420-9101.2004.00811.x.
Article
CAS
PubMed
Google Scholar
Cameron SA, Mardulyn P: Multiple Molecular Data Sets Suggest Independent Origins of Highly Eusocial Behavior in Bees (Hymenoptera: Apinae). Syst Biol. 2001, 50: 194-214. 10.1080/10635150151125851.
Article
CAS
PubMed
Google Scholar
Danforth BN: Evolution of sociality in a primitively eusocial lineage of bees. PNAS. 2002, 99: 286-290. 10.1073/pnas.012387999.
Article
CAS
PubMed
Google Scholar
Carroll SB: Chance and necessity: the evolution of morphological complexity and diversity. Nature. 2001, 409: 1102-1109. 10.1038/35059227.
Article
CAS
PubMed
Google Scholar
King N: The Unicellular Ancestry of Animal Development. Developmental Cell. 2004, 7: 313-325. 10.1016/j.devcel.2004.08.010.
Article
CAS
PubMed
Google Scholar
Grosberg RK, Strathmann RR: The Evolution of Multicellularity: A Minor Major Transition?. Annu Rev Ecol Evol Syst. 2007, 38: 621-54. 10.1146/annurev.ecolsys.36.102403.114735.
Article
Google Scholar
Danforth BN, Conway L, Shuqing J: Phylogeny of Eusocial Lasioglossum Reveals Multiple Losses of Eusociality Within a Primitively Eusocial Clade of Bees (Hymenoptera:Halictidae). Syst Biol. 2003, 52: 23-36. 10.1080/10635150390132687.
Article
PubMed
Google Scholar
Chapman H, Houliston GJ, Robson B, Iline I: A case of reversal: The evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. International Journal of Plant Science. 2003, 164: 719-728. 10.1086/376819.
Article
Google Scholar
Whiting MF, Bradler S, Maxwell T: Loss and recovery of wings in stick insects. Nature. 2003, 421: 264-267. 10.1038/nature01313.
Article
CAS
PubMed
Google Scholar
Domes K, Norton RA, Maraun M, Scheu S: Reevolution of sexuality breaks Dollo's law. PNAS. 2007, 104: 7139-7144. 10.1073/pnas.0700034104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zufall RA, Rausher MD: Genetic changes associated with floral adaptation restrict future evolutionary potential. Nature. 2004, 428: 847-850. 10.1038/nature02489.
Article
CAS
PubMed
Google Scholar
Igic B, Bohs L, Kohn JR: Ancient polymorphism reveals unidirectional breeding system shifts. PNAS. 2006, 103: 1359-1363. 10.1073/pnas.0506283103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bull JJ, Charnov EL: On Irreversible Evolution. Evolution. 1985, 39: 1149-1155. 10.2307/2408742.
Article
Google Scholar
Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV: Questioning the evidence for Earth's oldest fossils. Nature. 2002, 416: 76-81. 10.1038/416076a.
Article
PubMed
Google Scholar
Noffke N, Eriksson KA, Hazen RM, Simpson EL: A new window into Early Archean life: Microbial mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology. 2006, 34: 253-256. 10.1130/G22246.1.
Article
CAS
Google Scholar
Sugitani K, Grey K, Allwood A, Nagaoka T, Mimura K, Minami M, Marshall CP, Van Kranendonk MJ, Walter MR: Diverse microstructures from Archaean chert from the mount goldsworthy-mount grant area, Pilbara Craton, Western Australia: Microfossils, dubiofossils, or pseudofossils?. Precambrian Research. 2007, 158: 228-262. 10.1016/j.precamres.2007.03.006.
Article
CAS
Google Scholar
Glikson LJ, Duck Mand, Golding ASD, Hofmann Axel, Bolhar R, Webb R, Baiano J, Sly L: Microbial remains in some earliest Earth rocks: Comparison with a potential modern analogue. Precambrian Research. 2008, 164: 187-200. 10.1016/j.precamres.2008.05.002.
Article
CAS
Google Scholar
Wacey D, Kilburn MR, McLoughlin N, Parnell J, Stoake CA, Grovenor CRM, Brasier MD: Use of NanoSIMS in the search for early life on Earth: ambient inclusion trails in a c. 3400 Ma sandstone. Journal of the Geological Society. 2008, 1: 43-53. 10.1144/0016-76492007-032.
Article
Google Scholar
Klein C, Beukes NJ, Schopf JW: Filamentous microfossils in the early proterozoic transvaal supergroup: their morphology, significance, and paleoenvironmental setting. Precambrian Research. 1987, 36: 81-94. 10.1016/0301-9268(87)90018-0.
Article
Google Scholar
Altermann W, Schopf JW: Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Research. 1995, 75: 65-90. 10.1016/0301-9268(95)00018-Z.
Article
CAS
PubMed
Google Scholar
Schopf JW, Packer BM: Early Archean (3.3-Billion to 3.5-Billion-Year-Old) Microfossils from Warrawoona Group, Australia. Science. 1987, 237: 70-73. 10.1126/science.11539686.
Article
CAS
PubMed
Google Scholar
Knoll AH, Barghoorn ES: Archaean Microfossils Showing Cell Division from the Swaziland System of South Africa. Science. 1977, 198: 396-398. 10.1126/science.198.4315.396.
Article
CAS
PubMed
Google Scholar
Schopf JW, Barghoorn ES: Alga-Like Fossils from the Early Precambrian of South Africa. Science. 1967, 156: 506-512. 10.1126/science.156.3774.508.
Article
Google Scholar
Rossetti V, Schirrmeister BE, Bernasconi MV, Bagheri HC: The evolutionary path to terminal differentiation and division of labor in cyanobacteria. Journal of Theoretical Biology. 2010, 262 (1): 23-34. 10.1016/j.jtbi.2009.09.009.
Article
PubMed
Google Scholar
Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B, Creaser RA, Kaufman AJ, Gordon GW, Scott C, Garvin J, Buick R: A Whiff of Oxygen Before the Great Oxidation Event?. Science. 2007, 317: 1903-1906. 10.1126/science.1140325.
Article
CAS
PubMed
Google Scholar
Butterfield NJ: Macroevolution and macroecology through deep time. Palaeontology. 2007, 50: 41-55. 10.1111/j.1475-4983.2006.00613.x.
Article
Google Scholar
Damuth JD: Evolution: Tempo and Mode. Encyclopedia of Life Science. 2001, 1-7.
Google Scholar
Stanley SM: Ecological Theory For Sudden Origin Of Multicellular Life In Late Precambrian - (Adaptive Radiation-Cambrian-Evolution-Paleontology-Predation). Proceedings Of The National Academy Of Sciences Of The United States Of America. 1973, 70 (5): 1486-1489. 10.1073/pnas.70.5.1486.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boraas ME, Seale DB, Boxhorn JE: Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evolutionary Ecology. 1998, 12 (2): 153-164. 10.1023/A:1006527528063.
Article
Google Scholar
Kaiser D: Building a multicellular organism. Annual Review Of Genetics. 2001, 35: 103-123. 10.1146/annurev.genet.35.102401.090145.
Article
CAS
PubMed
Google Scholar
Tannenbaum E: Selective advantage for multicellular replicative strategies: A two-cell example. Physical Review E. 2006, 73: 010904-10.1103/PhysRevE.73.010904.
Article
CAS
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids res. 2002, 30: 3059-3066. 10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller M, Holder M, Vos R, Midford P, Liebowitz T, Chan L, Hoover P, Warnow T: The CIPRES Portals. CIPRES. 2009, [http://www.phylo.org/sub_sections/portal]
Google Scholar
Hall T: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/97/NT. 1999, Oxford University Press, 41: 95-98.
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446.
Article
CAS
PubMed
Google Scholar
Lanave C, Preparata G, Saccone C, Serio G: A New Method For Calculating Evolutionary Substitution Rates. Journal Of Molecular Evolution. 1984, 20: 86-93. 10.1007/BF02101990.
Article
CAS
PubMed
Google Scholar
Rodriguez F, Oliver JL, Marin A, Medina JR: The General Stochastic-Model Of Nucleotide Substitution. Journal Of Theoretical Biology. 1990, 142 (4): 485-501. 10.1016/S0022-5193(05)80104-3.
Article
CAS
PubMed
Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997, 25 (24): 4876-4882. 10.1093/nar/25.24.4876.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
CAS
PubMed
Google Scholar
Xia X, Xie Z: DAMBE: Data analysis in molecular biology and evolution. Journal of Heredity. 2001, 92: 371-373. 10.1093/jhered/92.4.371.
Article
CAS
PubMed
Google Scholar
Xia X: Data analysis in molecular biology and evolution. 2001, Kluwer Academic Publishers, Boston
Google Scholar
Xia X, Xie Z, Salemi M, Chen M, Wang Y: An index of substitution saturation and its application. Molecular Phylogenetics and Evolution. 2003, 26: 1-7. 10.1016/S1055-7903(02)00326-3.
Article
CAS
PubMed
Google Scholar
Zwickl DJ: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD-Dissertation. 2006, The University of Texas at Austin
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14 (9): 817-818. 10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Sukumaran J: SumTrees: Summarization of Split Support on Phylogenetic Trees. Version 1.0.2. DendroPy Phylogenetic Computation Library Version 2.0.3. 2008
Google Scholar
Rambaut A, Drummond AJ: Tracer v1.4 [online]. 2007, [http://tree.bio.ed.ac.uk/software/tracer/]
Google Scholar
Wilgenbusch JC, Warren DL, Swofford DL: AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. 2004, [http://ceb.csit.fsu.edu/awty]
Google Scholar
Pagel M, Meade A, Barker D: Bayesian estimation of ancestral character states on phylogenies. Systematic Biology. 2004, 53: 673-684. 10.1080/10635150490522232.
Article
PubMed
Google Scholar
Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F: The rise of continents - An essay on the geologic consequences of photosynthesis. Science direct. 2006, 232: 99-113.
Google Scholar
Wilde SA, Valley JW, Peck WH, Graham CM: Evidence from detrital zircons for the existence of continental crust and ceans on the Earth 4.4 Gyr ago. Nature. 2001, 409: 175-178. 10.1038/35051550.
Article
CAS
PubMed
Google Scholar
Evans DA, Beukes NJ, Kirschvink JL: Low-latitude glaciation in the Palaeoproterozoic era. Nature. 1997, 386: 262-266. 10.1038/386262a0.
Article
CAS
Google Scholar
Comments
View archived comments (1)